首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(χ)在[a,b]上连续,在(a,b)内可导(a>0),证明:存在ξ∈(a,b),使得=ξf′(ξ).
设f(χ)在[a,b]上连续,在(a,b)内可导(a>0),证明:存在ξ∈(a,b),使得=ξf′(ξ).
admin
2019-08-23
53
问题
设f(χ)在[a,b]上连续,在(a,b)内可导(a>0),证明:存在ξ∈(a,b),使得
=ξf′(ξ).
选项
答案
令φ(χ)=f(b)lnχ-f(χ)lnχ+f(χ)lna,φ(a)=φ(b)=f(b)lna. 由罗尔定理,存在ξ∈(a,b),使得φ′(ξ)=0. 而φ′(χ)=[*]-f′(χ)lnχ+f′(χ)lna, 所以[*][f(b)-f(ξ)]-f′(ξ)(lnξ-lna)=0,即[*]=ξf′(ξ).
解析
转载请注明原文地址:https://kaotiyun.com/show/izA4777K
0
考研数学二
相关试题推荐
已知η是Ax=b的一个特解,ξ1,ξ2,…,ξn-r是对应齐次方程组Ax=0的基础解系.证明:η,η+ξ1,η+ξ2,…,η+ξn-r,是Ax=b的n-r+1个线性无关解向量;
设f(χ)在(0,1)内有定义,且eχf(χ)与e-f(χ)在(0,1)内都是单调增函数,证明:f(χ)在(0,1)内连续.
证明:当χ>0时,arctanχ+.
证明线性方程组(Ⅰ)有解的充分必要条件是方程组(Ⅲ)是同解方程组.
设f(x)在[0,1]上连续,在(0,1)内可导,f(0)=0,,f(1)=0.证明:对任意的k∈(-∞,+∞),存在ξ∈(0,η),使得f’(ξ)-k[f(ξ)-ξ]=1.
设f(χ)在[0,1]上连续,在(0,1)内可导,且f(0)=f(1),证明:存在ξ,η∈(0,1),使得f′(ξ)+f′(η)=0.
设f(x)在[-a,a](a>0)上有四阶连续的导数,存在.证明:存在ξ1,ξ2∈[-a,a],使得
设f(x)在区间[一a,a](a>0)上具有二阶连续导数,f(0)=0.(1)写出f(x)的带拉格朗日余项的一阶麦克劳林公式;(2)证明:在[一a,a]上存在η,使a3f"(η)=3∫一aaf(x)dx.
随机试题
引起汽车多路信息传输系统故障的原因有三种:一是_______、二是_______、三是_______。
机组振动频率若与转子转速不同,称为工频振动。()
甲为服装生产企业.其购进的某型号缝纫机,原价2000元/台,预计使用10年,现已使用4年,该型号缝纫机现行市价为1800元/台。要求:请根据上述资料,确定该型号缝纫机评估值。(计算结果以元为单位,取整)
费雪在其方程式(MV=PT)中认为,最重要的关系是
一被试者尿中肌酐浓度为168mg/ml,血浆肌酐浓度为1.2mg/ml,尿量为1ml/min,其肌酐清除率为
建设项目施工阶段中,()是落实设计文件的规划手段,是连接设计阶段和施工活动的桥梁。
贪污罪是指国家机关工作人员利用职务上的便利,侵吞、窃取、骗取或者利用其他手段非法占有()的行为。
如果赵川参加宴会,那么钱华、孙旭和李元将一起参加宴会。如果上述断定是真的,那么,以下哪项也是真的?
萨皮尔一沃尔夫假说的形成——2004年英译汉及详解Therelationoflanguageandmindhasinterestedphilosophersformanycenturies.【F1】TheGreeksassum
下面属于黑盒测试方法的是
最新回复
(
0
)