首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αs为线性方程组Ax=0的一个基础解系,β1=t1α1+t2β2,β2=t1α2+t2α3,…,βs=t1αs+t2α1,其中t1,t2为实常数.试问t1,t2满足什么关系时,β1,β2,…,βs也为Ax=0的一个基础解系.
设α1,α2,…,αs为线性方程组Ax=0的一个基础解系,β1=t1α1+t2β2,β2=t1α2+t2α3,…,βs=t1αs+t2α1,其中t1,t2为实常数.试问t1,t2满足什么关系时,β1,β2,…,βs也为Ax=0的一个基础解系.
admin
2018-04-15
50
问题
设α
1
,α
2
,…,α
s
为线性方程组Ax=0的一个基础解系,β
1
=t
1
α
1
+t
2
β
2
,β
2
=t
1
α
2
+t
2
α
3
,…,β
s
=t
1
α
s
+t
2
α
1
,其中t
1
,t
2
为实常数.试问t
1
,t
2
满足什么关系时,β
1
,β
2
,…,β
s
也为Ax=0的一个基础解系.
选项
答案
由Aβ
1
=A(t
1
α
1
+t
2
α
2
)=t
1
Aα
1
+t
2
Aα
2
=0+0=0,知β
1
为Ax=0的解,同理可知β
2
,β
3
,…,β
s
均为Ax=0的解.已知Ax=0的基础解系含s个向量,故Ax=0的任何s个线性无关的解都可作为Ax=0的基础解系.因此β
1
,β
2
,…,β
s
为Ax=0的基础解系,当且仅当β
1
,β
2
,…,β
s
线性无关. 设有一组数k
1
,k
2
,…,k
s
,使得 k
1
β
1
+k
2
β
2
+…+k
s
β
s
=0 即(t
1
k
1
+t
2
k
2
)α
1
+(t
2
k
1
+t
1
k
2
)α
2
+…+(t
2
k
s—1
+t
1
k
s
)α
s
=0, 由于α
1
,α
2
,…,α
s
线性无关,有 [*] (*) 上面齐次线性方程组的系数行列式为 [*] 故当且仅当t
1
s
+(一1)
I+s
t
2
s
≠1时,即当s为偶数,t
1
≠±t
2
;s为奇数,t
1
≠一t
2
时,齐次线性方程组(*)只有零解,β
1
,β
2
,…,β
s
线性无关,从而可作为Ax=0的基础解系.
解析
本题综合考查齐次线性方程组的基础解系的概念及其只有零解的条件,向量组线性相关性的概念及其判定.注意本题判定β
1
,β
2
,…,β
s
的线性相关性,属于一种常见题型.
转载请注明原文地址:https://kaotiyun.com/show/j4r4777K
0
考研数学一
相关试题推荐
求椭球面x2+2y2+z2=22上平行于平面x-y+2z=0的切平面方程。
在总体N(1,4)中抽取一容量为5的简单随机样本X1,X2,…,X5,则概率P(min{X1,X2,…,X5}<1)=________。
A是三阶矩阵,P是三阶可逆矩阵,,且Aα1=α1,Aα2=α2,Aα3=0,则P应是()。
已知三阶矩阵A满足A3=2E,若B=A2+2A+E,证明B可逆,且求B-1。
设有抛物线Γ:y=a-bx2(a>0,b>0),试确定常数a、b的值使得(1)Γ与直线y=x+1相切;(2)Γ与x轴所围图形绕y轴旋转所得旋转体的体积为最大。
设X为随机变量,若矩阵的特征值全为实数的概率为0.5,则()。
设常数a>0,L为摆线一拱,0≤t≤2π,则I=∫Lyds=________。
设a为常数,则级数
随机试题
驾驶机动车遇到这种情况要靠右侧停车等待。
当旧的经济关系日益腐朽,新的经济关系日益形成时,旧的道德体系也必将为新的道德体系所代替。人们的道德水平必然随着社会实践由低级到高级的发展而不断进步。这说明【】
日本血吸虫:中华支睾吸虫:
女性,26岁。间歇性牙龈出血伴月经过多1年。体检:双下肢可见散在出血点及紫癜,肝脾不大。血红蛋白120g/L,红细胞4.6×1012/L,白细胞5.5×109/L,分类正常,血小板25×109/L。特发性血小板减少性紫癜诊断要点不包括
十二指肠癌较罕见发生在哪段?()。
根据《中华人民共和国水污染防治法》对饮用水水源保护区的有关规定,下列说法中正确的是()。
我国地貌景观可分为花岗岩山地、岩溶山水、丹霞地貌等等,下列哪一组景观是上述三种地貌景观的典型代表()。
一线贯通是公文中显示主旨的方法之一,指的是主旨分散于一篇文章各个部分的小标题、小观点或者是条旨句、段旨句中,起一个穿针引线、提纲挈领的作用。()
[*]
HereIwanttotrytogiveyouananswertothequestion:whatpersonalqualitiesare【C1】______inateacher?Probablynotwope
最新回复
(
0
)