首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知三阶矩阵A满足A3=2E,若B=A2+2A+E,证明B可逆,且求B-1。
已知三阶矩阵A满足A3=2E,若B=A2+2A+E,证明B可逆,且求B-1。
admin
2015-11-16
47
问题
已知三阶矩阵A满足A
3
=2E,若B=A
2
+2A+E,证明B可逆,且求B
-1
。
选项
答案
解:A的元素没有给出,利用可逆矩阵的定义证之,注意到 B=A
2
+2A+E=(A+E)
2
, 只需证A+E可逆。 证 由A
3
=2E得到A
3
+E=3E,即 (A+E)(A
2
-A+E)=3E, 故A+E可逆,且 (A+E)
-1
=(A
2
-A+E)/3。 于是B=A+E可逆,且 B
-1
=[(A-E)
2
]
-1
=[(A+E)
-1
]
2
=[(A
2
-A+E)/3]
2
=(A
2
-A+E)
2
/9。
解析
转载请注明原文地址:https://kaotiyun.com/show/wUw4777K
0
考研数学一
相关试题推荐
设f(x)在(a,b)四次可导,x0∈(a,b)使得f"(x0)=f"’(x0)=0,又设f(4)(x)>0(x∈(a,b)),求证f(x)在(a,b)为凹函数.
A=求作一个3阶可逆矩阵P,使得PTAP是对角矩阵.
设f(x)=试问当a取何值时,f(x)在点x=0处,①连续,②可导,③一阶导数连续,④二阶导数存在.
已知3阶矩阵A满足Aαi=iαi,i=1,2,3,其中α1=(1,0,0)T,α2=(0,1,1)T,α3=(0,0,1)T,试求矩阵A.
判断下列结论是否正确?为什么?(Ⅰ)若函数f(x),g(x)均在x0处可导,且f(x0)=g(x0),则f’(x0)=g’(x0);(Ⅱ)若x∈(x0-δ,x0+δ),x≠x0时f(x)=g(x),则f(x)与g(x)在x=x0处有相同的可导性;(Ⅲ
求曲线Y=x3,x=1与x轴围成的封闭图形绕x=2旋转一周所得旋转体的体积.
设f(x)在[0,1]上连续,在(0,1)内存在二阶导数,且f(0)=0,f(1)=1,证明:对任意的a>0,b>0,存在ξ,η∈(0,1),使得.
计算,其中D为单位圆x2+y2=1所围成的位于第一象限的部分。
求幂级数的和函数.
在天平上重复称量一重为a的物品,假设各次称量结果相互独立且同服从正态分布N(a,0.22),若以n表示n次称量结果的算术平均值,则为使P{|X ̄-a|<0.1}≥0.95,n的最小值应小于自然数_________.
随机试题
刑事责任的设定根据是()。
建设工程项目履行合同的担保形式有()。
采用五五摊销法进行低值易耗品摊销的企业,应在“低值易耗品”科目下分设()等二级科目。
以下说法中,正确的有()
测验实用性反映了试题的基本质量,其基本要求是()。
饺子是由南北朝至唐朝时期的“偃月形馄饨”和南宋时的“燥肉双下角子”发展而来的,距今有1400多年的历史。清朝有关史料记载说:“元旦子时,盛馔同离,如食扁食,名角子,取其更岁交子之义。”新春佳节人们吃饺子,寓意吉利,以示辞旧迎新。关于这段话,下列说
人民警察在执行公务中使用拉响警报器和回转警灯的警车,其他车辆应给让道,这体现了行政主体享有()。
林先生要将从故乡带回的一包泥土分成小包装送给占其朋友总数30%的老年朋友。在分包装过程中发现,如果每包200克,则缺少500克,如果每包150克,则多余250克。那么,林先生的朋友共有多少人?
Today,Iamgoingtoidentifysometypicalresearchproblemsandalsosharewithyouthesolutionstotheseproblems.Thefirst
(1)Forsomeonewhoissuchanextraordinarilysuccessfulinvestor,WarrenBuffettcomesoffasaprettyordinaryguy.Bornandb
最新回复
(
0
)