首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知二维随机变量(X,Y)的概率分布为 又P{X=1}=0.5,且X与Y不相关. (I)求未知参数a,b,c; (Ⅱ)事件A={X=1}与B={max(X,Y)=1}是否独立,为什么? (Ⅲ)随机变量X+Y与X—Y是否相关,是否独
已知二维随机变量(X,Y)的概率分布为 又P{X=1}=0.5,且X与Y不相关. (I)求未知参数a,b,c; (Ⅱ)事件A={X=1}与B={max(X,Y)=1}是否独立,为什么? (Ⅲ)随机变量X+Y与X—Y是否相关,是否独
admin
2018-11-20
34
问题
已知二维随机变量(X,Y)的概率分布为
又P{X=1}=0.5,且X与Y不相关.
(I)求未知参数a,b,c;
(Ⅱ)事件A={X=1}与B={max(X,Y)=1}是否独立,为什么?
(Ⅲ)随机变量X+Y与X—Y是否相关,是否独立?
选项
答案
(1)应用联合分布、边缘分布关系及X与Y不相关求参数a、b、c.由于P{X=1}=0.5,故P{X=一1}=0.5,a=0.5—0.1—0.1=0.3.又X与Y不相关[*]E(XY)=EX.EY,其中EX=(一1)×0.5+1×0.5=0. XY可能取值为一1,0,1,且 P{XY=一1}=P{X=一1,Y=1}+P{X=1,Y=一1}=0.1+b, P{XY=1}=P{X=1,Y=1}+P{X=一1,Y=一1}=0.1+C, P{XY=0}=P{X=一1,Y=0}+P{X=1,Y=0}=a+0.1, 所以E(XY)=一0.1一b+0.1+c=c—b,由E(XY)=EXEY=0[*]c—b=0,b=c,又b+0.1+c=0.5,所以b=c=0.2. (Ⅱ)由于A={X=1}[*933]B={max(X,Y)=1},P(AB)=P(A)=0.5,0<P(B)<1,又P(A)P(B)=0.5P(B)<0.5=P(AB),即P(AB)≠P(A)P(B),所以A与B不独立. (Ⅲ)因为Cov(X+Y,X—Y)=Cov(X,X)一Cov(X,Y)+Cov(Y,X)一Cov(Y,Y)=DX—DY, DX=EX
2
一(EX)
2
=1,EY=0,DY=EY
2
一(EY)
2
=0.6,所以Cov(X+Y,X—Y)=1—0.6=0.4≠0,X+Y与X一Y相关[*]X+Y与X—Y不独立.
解析
转载请注明原文地址:https://kaotiyun.com/show/j5W4777K
0
考研数学三
相关试题推荐
用变量代换x=1nt将方程+e2xy=0化为y关于t的方程,并求原方程的通解.
设y=y(x)二阶可导,且y’≠0,x=x(y)是y=y(x)的反函数.(1)将x=x(y)所满足的微分方程变换为y=y(x)所满足的微分方程;(2)求变换后的微分方程满足初始条件y(0)=0,y’(0)=的解.
设P(A)=0.6,P(B)=0.5,P(A一B)=0.4,则P(B一A)=________,P(A+B)=________.
设的一个特征值为λ1=2,其对应的特征向量为ξ1=求常数a,b,c;
设A为三阶矩阵,且有三个互异的正的特征值,设矩阵B=(A*)2一4E的特征值为0,5,32.求A一1的特征值并判断A一1是否可对角化.
设,且AX+|A|E=A*+X,求X.
设X和Y为相互独立的连续型随机变量,它们的密度函数分别为f1(x),f2(x),它们的分布函数分别为F1(x),F2(x),则().
函数在区间[0,2]上的平均值为________.
已知随机变量(X,Y)在区域D={(x,y)|—1<x<1,—1<y<1}上服从均匀分布,则()
假设随机变量X与Y相互独立,如果X服从标准正态分布,Y的概率分布为P{y=—1}=求:(Ⅰ)Z=XY的概率密度fZ(z);(Ⅱ)V=|X—Y|的概率密度fV(υ)。
随机试题
设某按字节编址的计算机已配有00000H~07FFFH的ROM区,地址线为20位,现再用16K×8位的RAM芯片构成剩下的RAM区08000H~FFFFFH,则需要这样的RAM芯片()片。
患儿,男,5岁。反复间断咳嗽、喘2个月余,多为干咳,以夜间、晨起、活动后加重,两肺可在呼气末闻及哮鸣音。最可能的疾病是
患者上颌前磨牙近中颌面深龋,探敏感,冷测一过性疼痛,去除刺激可缓解,诊断为深龋,备洞时患者极其敏感。该牙当日的最佳处理方案为
成文法是指有权制定法律的国家机关依照法定程序制定的()文件。
建筑工程一切险的保险人对()不负责赔偿。
“总价”栏应填()。
“弟子不必不如师,师不必贤于弟子,闻道有先后,术业有专攻,如是而已。”与这种观点相近的教育启示是()。
简述我国中央对特别行政区行使的权力。(2013年法学综合课简答第32题)
认识发展过程的第一次飞跃是从实践到认识的过程,也就是在实践基础上从___________上升到_______的过程。
求f(x,y)=x+xy-x2-y2在闭区域D={(x,y)|x≤z≤1,0≤y≤2}上的最大值和最小值.
最新回复
(
0
)