首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知r(α1,α2,α3)=2,r(α2,α3,α4)=3,证明: (Ⅰ)α1能由α2,α3线性表示; (Ⅱ)α4不能由α1,α2,α3线性表示。
已知r(α1,α2,α3)=2,r(α2,α3,α4)=3,证明: (Ⅰ)α1能由α2,α3线性表示; (Ⅱ)α4不能由α1,α2,α3线性表示。
admin
2017-12-29
24
问题
已知r(α
1
,α
2
,α
3
)=2,r(α
2
,α
3
,α
4
)=3,证明:
(Ⅰ)α
1
能由α
2
,α
3
线性表示;
(Ⅱ)α
4
不能由α
1
,α
2
,α
3
线性表示。
选项
答案
(Ⅰ)r(α
1
,α
2
,α
3
)=2<3[*]α
1
,α
2
,α
3
线性相关; 假设α
1
不能由α
2
,α
3
线性表示,则α
2
,α
3
线性相关。 而由r(α
2
,α
3
,α
4
)=3[*]α
2
,α
3
,α
4
线性无关[*]α
2
,α
3
线性无关,与假设矛盾。 综上所述,α
1
必能由α
2
,α
3
线性表示。 (Ⅱ)由(Ⅰ)的结论,α
1
可由α
2
,α
3
线性表示,则若α
4
能由α
1
,α
2
,α
3
线性表示[*]α
4
能由α
2
,α
3
线性表示,即r(α
2
,α
3
,α
4
)<3与r(α
2
,α
3
,α
4
)=3矛盾,故α
4
不能由α
1
,α
2
,α
3
线性表示。
解析
转载请注明原文地址:https://kaotiyun.com/show/jFX4777K
0
考研数学三
相关试题推荐
设f(x),g(x)在[a,b]上二阶可导,且f(A)=f(b)=g(A)=0.证明:∈(a,b),使f"(ξ)g(ξ)+2f’(ξ)g’(ξ)+f(ξ)g"(ξ)=0.
设A是n阶矩阵,满足A2=A,且r(A)=r(0<r≤n).证明:其中Er是,r阶单位阵.
假设某季节性商品,适时地售出1千克可以获利s元,季后销售每千克净亏损t元。假设一家商店在季节内该商品的销售量X(千克)是一随机变量,并且在区间(a,b)内均匀分布。问季初应安排多少这种商品,可以使期望销售利润最大?
已知问λ取何值时,β不能由α1,α2,α3线性表出.
已知某商品的需求量D和供给量S都是价格p的函数;D=D(p)=,S=S(p)=bp,其中a>0和b>0为常数;价格p是时间t的函数且满足方程=k[D(p)一S(p)](k为正的常数).假设当t=0时价格为1,试求需求量等于供给量时的均衡价格pe;
求下列积分:
已知线性方程组的通解为[2,1,0,1]T+k[1,一1,2,0]T.记αj=[α1j,α2j,α3j,α4j]T,j=1,2,…,5.问:α4能否由α1,α2,α3,α5线性表出,说明理由.
设A是n阶矩阵,A*是A的伴随矩阵,若|A|=a,则行列式等于().
设求与A乘积可交换的所有矩阵.
设求An.
随机试题
Wheredidthemoviesbegin?ItisoftensaidthattheyareanAmericaninvention.Itisnotentirelytrue.Themotionpictureha
膀胱造影的方法不包括
某企业拟更新原设备,新旧设备的详细资料如下:假设企业最低报酬率为10%,所得税税率为25%,按直线法计提折旧。要求:计算继续使用旧设备的相关指标:①旧设备的年折旧;②旧设备的账面净值;③旧设备的变现损益;④变现损失对税的影响;⑤继续使用旧设备的
专利权的主体是指具体参加特定的专利权法律关系并享有专利权的人。下列说法不符合《专利法》规定的有()。
全面贯彻落实科学技术是第一生产力的思想,要求大力实施()。
2010年全国完成城镇固定资产投资241415亿元,同比增长24.5%,其中,第一、二、三产业分别完成3966亿元、101048亿元和136401亿元,分别增长18.2%、23.2%和25.6%;而同期江苏完成城镇固定资产投资17419亿元,增长22.1%
己知inta=6;则执行a+=a一=a*a;语句后,a的值为()。
CyclingawakensmyinnerTrotwood.DavidCopperfield’sgreat-auntBetseywasobsessedwithdonkeystrespassingonthegreenouts
[A]community[B]compassion[C]describe[D]distractedly[E]documenting[F]drastic[G]immediate[H]increasingly[I]prescribe[J]protective
Whiletheworld’sflufightershaveconcentratedoncounteringtheH1N1swineflu,birdfluH5N1hasquietlycontinuedtotakei
最新回复
(
0
)