首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知r(α1,α2,α3)=2,r(α2,α3,α4)=3,证明: (Ⅰ)α1能由α2,α3线性表示; (Ⅱ)α4不能由α1,α2,α3线性表示。
已知r(α1,α2,α3)=2,r(α2,α3,α4)=3,证明: (Ⅰ)α1能由α2,α3线性表示; (Ⅱ)α4不能由α1,α2,α3线性表示。
admin
2017-12-29
39
问题
已知r(α
1
,α
2
,α
3
)=2,r(α
2
,α
3
,α
4
)=3,证明:
(Ⅰ)α
1
能由α
2
,α
3
线性表示;
(Ⅱ)α
4
不能由α
1
,α
2
,α
3
线性表示。
选项
答案
(Ⅰ)r(α
1
,α
2
,α
3
)=2<3[*]α
1
,α
2
,α
3
线性相关; 假设α
1
不能由α
2
,α
3
线性表示,则α
2
,α
3
线性相关。 而由r(α
2
,α
3
,α
4
)=3[*]α
2
,α
3
,α
4
线性无关[*]α
2
,α
3
线性无关,与假设矛盾。 综上所述,α
1
必能由α
2
,α
3
线性表示。 (Ⅱ)由(Ⅰ)的结论,α
1
可由α
2
,α
3
线性表示,则若α
4
能由α
1
,α
2
,α
3
线性表示[*]α
4
能由α
2
,α
3
线性表示,即r(α
2
,α
3
,α
4
)<3与r(α
2
,α
3
,α
4
)=3矛盾,故α
4
不能由α
1
,α
2
,α
3
线性表示。
解析
转载请注明原文地址:https://kaotiyun.com/show/jFX4777K
0
考研数学三
相关试题推荐
设随机变量X与Y的分布律为且相关系数则(X,Y)的分布律为________.
设f(x)在区间[-a,a](a>0)上具有二阶连续导数,f(0)=0.证明:存在η∈[-a,a],使a3f"(η)=3∫-aaf(x)dx.
已知α1=[一1,1,a,4]T,α2=[一2,1,5,a]T,α3=[a,2,10,1]T是4阶方阵A的3个不同特征值对应的特征向量,则a的取值为()
设A是n阶矩阵,满足AAT=E(E是n阶单位矩阵,AT是A的转置矩阵),|A|<0,求|A+E|.
已知某商品的需求量D和供给量S都是价格p的函数;D=D(p)=,S=S(p)=bp,其中a>0和b>0为常数;价格p是时间t的函数且满足方程=k[D(p)一S(p)](k为正的常数).假设当t=0时价格为1,试求价格函数p(t);
设矩阵,且|A|=一1,A的伴随矩阵A*有特征值λ0,属于λ0的特征向量为α=[-1,-1,1]T,求a,b,c及λ0的值.
设函数f(x)在(a,b)内存在二阶导数,且f"(x)<0.试证:若x1,x2,…xn∈(a,b),且xi<xi+1(i=1,2,…,n一1),则其中常数ki>0(i=1,2,…,n)且
y=e2x+(1+x)ex是二阶常系数线性微分方程yˊˊ+ayˊ+βy=rex的一个特解,则α2+β2+r2=________.
设求n及a的值.
设求常数A与k使得当x→0时f(x)与Axk是等价无穷小量.
随机试题
为什么说悲剧感是痛感中的快感?请举例阐释。
Wordhadcomefromthemanager______anewtransactionwouldbeconcluded.
关于胃肠内在神经丛的叙述,正确的是
下列关于证券的说法中,不正确的有( )。
关于企业公平市场价值的以下表述中,正确的有()。(2004年)
Thesubstancecanbeaddedtogasolinetoacceleratethespeedofautomobiles.
甲从乙商场购买了一张丙公司生产的玻璃餐台,使用几天后,餐台因质量问题突然炸裂致甲受伤,甲()。
潜行性龋
(2015年真题)某市打算引进大型化工项目,引发社会争议。赞同者认为该项目将促进本市经济发展;反对者认为该项目会造成严重环境污染,损害民众健康。该市综合考量后,决定终止引进该项目。根据法的价值冲突理论,该市的最终决定体现出()。
请运用中国法制史的理论和知识对下列材料进行分析,并回答问题:《唐律疏议.户婚律》规定:诸妻无七出及义绝之状,而出之者,徒一年半;虽犯七出,有三不去,而出之者,杖一百。追还合。若犯恶疾及奸者,不用此律。《疏议》曰:“义绝”,谓殴妻之祖父母、父母及杀妻外祖
最新回复
(
0
)