首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知r(α1,α2,α3)=2,r(α2,α3,α4)=3,证明: (Ⅰ)α1能由α2,α3线性表示; (Ⅱ)α4不能由α1,α2,α3线性表示。
已知r(α1,α2,α3)=2,r(α2,α3,α4)=3,证明: (Ⅰ)α1能由α2,α3线性表示; (Ⅱ)α4不能由α1,α2,α3线性表示。
admin
2017-12-29
46
问题
已知r(α
1
,α
2
,α
3
)=2,r(α
2
,α
3
,α
4
)=3,证明:
(Ⅰ)α
1
能由α
2
,α
3
线性表示;
(Ⅱ)α
4
不能由α
1
,α
2
,α
3
线性表示。
选项
答案
(Ⅰ)r(α
1
,α
2
,α
3
)=2<3[*]α
1
,α
2
,α
3
线性相关; 假设α
1
不能由α
2
,α
3
线性表示,则α
2
,α
3
线性相关。 而由r(α
2
,α
3
,α
4
)=3[*]α
2
,α
3
,α
4
线性无关[*]α
2
,α
3
线性无关,与假设矛盾。 综上所述,α
1
必能由α
2
,α
3
线性表示。 (Ⅱ)由(Ⅰ)的结论,α
1
可由α
2
,α
3
线性表示,则若α
4
能由α
1
,α
2
,α
3
线性表示[*]α
4
能由α
2
,α
3
线性表示,即r(α
2
,α
3
,α
4
)<3与r(α
2
,α
3
,α
4
)=3矛盾,故α
4
不能由α
1
,α
2
,α
3
线性表示。
解析
转载请注明原文地址:https://kaotiyun.com/show/jFX4777K
0
考研数学三
相关试题推荐
设f(x),g(x)在[a,b]上二阶可导,g"(x)≠0,f(A)=f(b)=g(A)=g(b)=0.证明:在(a,b)内至少存在一点ξ,使
设fn(x)=x+x2+…+xn,n=2,3,….证明:方程fn(x)=1在[0,+∞)有唯一实根xn;
截至2010年10月25日,上海世博会参观人数超过了7000万人.游园最大的痛苦就是人太多.假设游客到达中国馆有三条路径,沿第一条路径走3个小时可到达;沿第二条路径走5个小时又回到原处;沿第三条路径走7个小时也回到原处.假定游客总是等可能地在三条路径中选
已知是f(x)的原函数,则∫xf’(x)dx=________.
设矩阵,矩阵X满足AX+E—A2+X,其中E为3阶单位矩阵,求矩阵X.
设f(x)在闭区间[0,c]上连续,其导数f’(x)在开区间(0,c)内存在且单调减少,f(0)=0.试应用拉格朗日中值定理证明:f(a+b)≤f(A)+f(b),其中常数a,b满足条件0≤a≤b≤a+b≤c.
已知y—y(x)是微分方程(x2+y2)dy一dy的任意解,并在y=y(x)的定义域内取x0,记y0一y(x0)。证明:均存在.
求证:当x>0时,不等式成立.
设二次型f=x12+x22+x32+2αx1x2一2βx2x3+2x1x3经正交交换X=PY化成f=y22+2y32,其中X=(x1,x2,x3)T和Y=(y1,y2,y3)T是3维列向量,P是3阶正交矩阵,试求常数α,β。
设4阶矩阵A=[α1β1β2β3],B=[a2β1β2β3],其中α1,α2,β1,β2,β3均为4维列向量,且已知行列式∣A∣=4,∣B∣=1,则行列式∣A+B∣=_______.
随机试题
A.石膏、知母B.石膏、人参C.石膏、粳米D.石膏、牛膝E.石膏、寒水石(2005年第96,97题)属于清燥救肺汤组成药物的是()
肝动脉造影选用什么导管
A、IgMB、IgGC、IgED、IgAE、IgD具有早期诊断意义的Ig是
A.呋塞米B.硝普钠C.卡托普利D.硝苯地平E.地高辛急性肾炎少尿首选
空调风系统由()组成。
A、B股票的投资回报信息如表13-4所示。投资者应该选择哪一只股票?为什么?( )
根据以下情境材料,回答下列问题。某县公安局开展春节前无重大交通事故月,要求加大宣传力度,加大对通行道路的勘查及驾驶人员的检查等工作,确保不发生重大交通事故,并划分为事故处理组、路况检查组、驾驶人员检查组等。以下是该局一周的记录情况:
加德纳多元智能理论认为,每个人都可能拥有多种智能,且拥有自己的潜在优势领域。按照这一理论,作家的优势智能应该是()。
以下选项中可用作C语言中合法用户标识符的是()。
Hardlyaweekgoesbywithoutsomeadvanceintechnologythatwouldhaveseemedincredible50yearsago.Andwecanexpectther
最新回复
(
0
)