首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A= (1)将A表示成若干个初等矩阵的乘积; (2)将A表示成一个主对角元为1的下三角矩阵R和一个上三角矩阵S的乘积.
设A= (1)将A表示成若干个初等矩阵的乘积; (2)将A表示成一个主对角元为1的下三角矩阵R和一个上三角矩阵S的乘积.
admin
2016-11-03
26
问题
设A=
(1)将A表示成若干个初等矩阵的乘积;
(2)将A表示成一个主对角元为1的下三角矩阵R和一个上三角矩阵S的乘积.
选项
答案
(1) [*] 用初等矩阵表示上述变换关系,得到 E
12
(-2)E
2
(-[*])E
21
(一3)A=E, 则 A=[E
21
(一3)]
-1
[E
2
(-[*])]
-1
[E
12
(-2)]
-1
E =E
21
(3)E
2
(-5)E
12
(2)E=[*] (2) [*] 其中R=[*]为主对角元为1的下三角矩阵,S=[*]为上三角矩阵.
解析
先将A用初等行变换化成单位矩阵,然后将其行变换用初等矩阵表示,于是若干个初等矩阵左乘A等于单位矩阵.再求出这些初等矩阵的逆矩阵(它们仍然是初等矩阵),即可得到用初等矩阵的乘积表示的矩阵A.
转载请注明原文地址:https://kaotiyun.com/show/jHu4777K
0
考研数学一
相关试题推荐
2
已知电源电压X服从正态分布N(220,252),在电源电压处于X≤200V,200V<X<240V,X>240V三种情况下,某电子元件损坏的概率分别0.1,0.01,0.2.(1)试求该电子元件损坏的概率α;(2)该电子元件损坏时,电源电压在200
设x元线性方程组Ax=b,其中,证明行列式丨A丨=(n+1)an.
设矩阵,矩阵B满足ABA*=2BA*+E,其中A*为A的伴随矩阵,E是单位矩阵,则丨B丨=__________.
设函数z=f(x,y)在点(1,1)处可微,且f(1,1)=1,.
设f(x,y)在点(0,0)的某邻域内连续,且满足则函数f(x,y)在点(0,0)处().
(2008年试题,18)设函数f(x)连续.(I)用定义证明F(x)可导。且F’(x)=f(x);(Ⅱ)设f(x)是周期为2的连续函数,证明也是周期为2的函数.
已知A是2×4矩阵,齐次方程组Ax=0的基础解系是η1=(1,3,0,2)T,η2=(1,2,一1,3)T,又知齐次方程组Bx=0的基础解系是β1=(1,1,2,1)T,β2=(0,一3,1,a)T,如果齐次线性方程组Ax=0与Bx=0有非零公共解,求
已知y(x)=xe-x+e—h,y2*(x)=xe-x+xe-2x,y3*(x)=xe-x+e-2x+xe-2x是某二阶线性常系数微分方程y’’+py’+qy=f(x)的三个特解.求这个方程和它的通解;
(00年)曲面x2+2y2+3z2=21在点(1,一2,2)处的法线方程为________.
随机试题
在公文起草中,围绕发文主旨所收集的材料应当具有()
制备颗粒剂时,应选用的赋形剂是
反映一个地区经济的外向型程度和在国际化分工中的竞争实力的指标是()。
下列关于“买权”和“卖权”理解正确的是()。
一般资料:求助者,男性,14岁,初中二年级学生。案例介绍:求助者是妈妈强迫来咨询的。经过与心理咨询师交流,开始敞开心扉,自诉最大的问题是与父亲的关系。父亲经常打他,几乎每天一次,后来每次打时求助者几乎都没反应了。很憎恶父亲的做法,但又没有办法。求
戏剧大师莎士比亚说:“适当的悲伤可以表示感情的深切,过度的伤心却可以证明智慧的欠缺。”这启示我们()。
Weallcarrybitter,discomfortingmemoriesofdeedsdoneorundone,andwordssaidorunsaid.Andweallbearwounds—somesligh
列宁认为,生产力的发展是“社会进步的最高标准”。对“生产力标准”理解正确的是()
传统密码体制所用的加密密钥和解密密钥(),也称为()体制。
October15,2009SheldonPeterson200CenterStreetFreeport,Vermont66622DearMr.Peterson,Thankyouforyourremarksono
最新回复
(
0
)