首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知y(x)=xe-x+e—h,y2*(x)=xe-x+xe-2x,y3*(x)=xe-x+e-2x+xe-2x是某二阶线性常系数微分方程y’’+py’+qy=f(x)的三个特解. 设y=y(x)是该方程满足y(0)=0,y’(0)=0的特解,求
已知y(x)=xe-x+e—h,y2*(x)=xe-x+xe-2x,y3*(x)=xe-x+e-2x+xe-2x是某二阶线性常系数微分方程y’’+py’+qy=f(x)的三个特解. 设y=y(x)是该方程满足y(0)=0,y’(0)=0的特解,求
admin
2014-02-06
125
问题
已知y(x)=xe
-x
+e—h,y
2
*
(x)=xe
-x
+xe
-2x
,y
3
*
(x)=xe
-x
+e
-2x
+xe
-2x
是某二阶线性常系数微分方程y
’’
+py
’
+qy=f(x)的三个特解.
设y=y(x)是该方程满足y(0)=0,y
’
(0)=0的特解,求
选项
答案
[*]C
1
,C
2
,方程的任意解y(x)均有[*]不必由初值来定C
1
,C
2
,直接将方程两边积分得[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/tk54777K
0
考研数学一
相关试题推荐
设A是4×3矩阵,且A的秩r(A)=2,而,则r(AB)=___________________
设A为n阶非零矩阵,E为n阶单位矩阵,若A3=O,则()
设3阶实对称矩阵A的秩为2,且求矩阵A.
设3阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=-1,且α1=(1,a+1,2)T,α2=(a-1,-a,1)T分别是λ1,λ2对应的特征向量.又A的伴随矩阵A*有一个特征值为λ0,属于λ0的特征向量为α0=(2,-5a,2a+1)T.试求a、λ0的值
设函数f(x)处处可导,且(k>0为常数),又设x0为任意一点,数列{xn}满足xn=f(xn-1)(n=1,2,…),试证:当n→∞时,数列{xn}的极限存在.
求下列极限:
求直线在平面π:x-y+2x-1=0上的投影直线L0的方程,并求L0绕y轴旋转一周所成曲面的方程.
设曲线段(0≤t≤2π),平面区域D由曲线段L与x轴所围成.(Ⅰ)求区域D分别绕x轴和y轴所得旋转体的体积;(Ⅱ)求
设函数f(x)在区间[0,+∞)上连续可导,f(0)=1,且对任意t>0,曲线y=f(x)与直线x=0,x=t,y=0所围图形的面积与曲线y=f(x)在[0,t]上的一段弧长相等,求f(x).
求极限
随机试题
某病毒性心肌炎病人,每两个窦性搏动后出现一个室性早搏,需及早( )
健康教育的核心是
下列入汤剂需后下的药物是
A.细胞水肿B.脂质沉积C.结缔组织玻璃样变D.血管壁玻璃样变E.细胞内玻璃样变肝细胞胞浆内嗜酸性小体
个体产生新奇独特的、有社会价值的产品能力或特性称之为______。
如果比较全日制学生的数量,东江大学的学生数是西海大学的70%,如果比较学生总数量(全日制学生加上成人教育学生),则东江大学的学生数是西海大学的120%。由上文最能推出以下哪项结论?
设f(x,y)可微,f(1,2)=2,f’x(1,2)=3,f’y(1,2)=4,φ(x)=f[x,f(x,2x)],则φ’(1)=________.
A、 B、 C、 D、 C
LachlanCommunityFairTheLachlanCommunityFairwJlTaKeplaceonSaturdaythe19thofOctober.Thisisapopularannuale
Myanmar’soppositionleader,DawAungSanSuuKyi,confirmedonTuesdaythatshewouldrunfromaseatinthecountry’snewParl
最新回复
(
0
)