首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知y(x)=xe-x+e—h,y2*(x)=xe-x+xe-2x,y3*(x)=xe-x+e-2x+xe-2x是某二阶线性常系数微分方程y’’+py’+qy=f(x)的三个特解. 设y=y(x)是该方程满足y(0)=0,y’(0)=0的特解,求
已知y(x)=xe-x+e—h,y2*(x)=xe-x+xe-2x,y3*(x)=xe-x+e-2x+xe-2x是某二阶线性常系数微分方程y’’+py’+qy=f(x)的三个特解. 设y=y(x)是该方程满足y(0)=0,y’(0)=0的特解,求
admin
2014-02-06
118
问题
已知y(x)=xe
-x
+e—h,y
2
*
(x)=xe
-x
+xe
-2x
,y
3
*
(x)=xe
-x
+e
-2x
+xe
-2x
是某二阶线性常系数微分方程y
’’
+py
’
+qy=f(x)的三个特解.
设y=y(x)是该方程满足y(0)=0,y
’
(0)=0的特解,求
选项
答案
[*]C
1
,C
2
,方程的任意解y(x)均有[*]不必由初值来定C
1
,C
2
,直接将方程两边积分得[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/tk54777K
0
考研数学一
相关试题推荐
设A为n阶非零矩阵,E为n阶单位矩阵,若A3=O,则()
解下列一阶微分方程
设xOy平面上有正方形D={(x,y)|-1≤x≤1,-1≤y≤1}及直线l:x+y=t,若l(t)表示正方形D位于直线l左下方部分的面积,试求
设函数f(x)处处可导,且(k>0为常数),又设x0为任意一点,数列{xn}满足xn=f(xn-1)(n=1,2,…),试证:当n→∞时,数列{xn}的极限存在.
设对于半空间x>0内的任意光滑有向封闭曲面∑,都有其中函数f(x)在(0,+∞)内具有连续的一阶导数,且,求f(x)
求下列极限:
设z=f(e2t,sin2t),其中f二阶连续可偏导,求
设f(u,v)二阶连续可偏导,又z=f[xy,ln(x2+y2)],求
设正项数列{an}收敛于0,且bn=,n=1,2,…,则=________.
袋中有一个红球,两个黑球,三个白球,现在放回的从袋中取两次,每次取一个,若以X、Y、Z分别表示两次取球所取得的红、黑与白球的个数.求二维随机变量(X,Y)的概率分布.
随机试题
Na2S2O3溶液对铜的滴定度为13.25mg/mL。计算该溶液每毫升含多少毫克的Na2S2O3.5H2O?已知Na2S2O3.5H2O和Cu的摩尔质量分别为248.2g/mol和63.55g/mol。
正常人大于69岁时,角膜内皮细胞的平均密度为每平方毫米
患伤寒病后,带菌者最常见的带菌部位是
A.局麻下在波动最明显部位行十字切开引流B.腰麻下做距肛缘3~5cm的弧形切口C.腰麻下穿破肛提肌做脓肿切开引流D.全麻下行脓肿切除术E.脓肿形成后行非手术治疗骨盆直肠间隙脓肿
A.湿法制粒B.干法制粒C.粉末直接压片D.空白颗粒法E.湿法制粒、干法制粒、粉末直接压片均可辅料具有相当好的流动性和可压性,且与药物混合后性质不变,宜采用的制片方法是()。
根据我国《公证法》规定,对下列哪一事项公证机关可予办理公证?(2008年试卷一第49题)
朱某是一起决水案的犯罪嫌疑人,公安机关将案件移送人民检察院审查起诉,人民检察院为了审查案件,将朱某拘传至人民检察院接受了1H的讯问。朱某对此提出了申诉,他可以对人民检察院以何种理由提出申诉?()
改革开放以后,中国共产党在社会主义建设实践的基础上提出了中国特色社会主义理论体系,从而实现了马克思主义中国化的第二次历史性飞跃,系统回答了什么是社会主义、怎样建设社会主义,建设什么样的党、怎样建设党,实现什么样的发展、怎样发展等重大理论实际问题。包括(
设系统日期为2001年12月31日,下列表达式的值是【】。VAL(SUBSTR("1999",3)+RIGHT(STR(YEAR(DATE())),2))+17
Manycountriesexistinthisworld.Howtodealwiththeproblemsamongthem?Socomeswiththeinternationalcommunities.Amaj
最新回复
(
0
)