首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组α1,α2,…,αm中任一向量αi不是它前面i一1个向量的线性组合,且α1≠0,试证:向量组α1,α2,…,αm的秩为m.
设向量组α1,α2,…,αm中任一向量αi不是它前面i一1个向量的线性组合,且α1≠0,试证:向量组α1,α2,…,αm的秩为m.
admin
2020-09-25
77
问题
设向量组α
1
,α
2
,…,α
m
中任一向量α
i
不是它前面i一1个向量的线性组合,且α
1
≠0,试证:向量组α
1
,α
2
,…,α
m
的秩为m.
选项
答案
假设α
1
,α
2
,…,α
m
线性相关,则有不全为零的数k
1
,k
2
,…,k
m
,使 k
1
α
1
+k
2
α
2
+…+k
m
α
m
=0. 我们断言k
m
=0,否则有[*]即α
m
可由它前面的m一1个向量线性表示,矛盾.所以k
m
=0.从而有k
1
α
1
+k
2
α
2
+…+k
m-1
α
m-1
=0. 类似前面的证法我们可得k
m-1
=0,…,k
2
=0.于是有k
1
α
1
=0. 但α
1
≠0,所以k
1
=0.而这与k
1
,k
2
,…,k
m
不全为零矛盾.所以α
1
,α
2
,…,α
m
线性无关,从而可得其秩为m.
解析
转载请注明原文地址:https://kaotiyun.com/show/jJx4777K
0
考研数学三
相关试题推荐
设f(u,v)是二元可微函数
设A为m×n实矩阵,E为n阶单位矩阵.已知矩阵B=λE+ATA,试证:当λ>0时,矩阵B为正定矩阵.
设4维向量组α1=(1+a,1,1,1)T,α2=(2,2+a,2,2)T,α3=(3,3,3+a,3)T,α4=(4,4,4,4+a)T,问a为何值时,α1,α2,α3,α4线性相关?当α1,α2,α3,α4线性相关时,求其一个极大线性无关组,并将其余向
(2013年)当x→0时,1一cosx.cos2x.cos3x与axn为等价无穷小,求n与a的值.
(14年)设随机变量X,Y的概率分布相同,X的概率分布为P{X=0}=,P{X=1}=,且X与Y的相关系数ρXY=.(Ⅰ)求(X,Y)的概率分布;(Ⅱ)求P{X+Y≤1}.
设有两条抛物线y=nx2+1/n和y=(n+1)x2+1/(n+1).记它们交点的横坐标的绝对值为an.求两条抛物线所围成的平面图形的面积Sn;
曲线的切线与x轴和y轴围成一个图形,记切点的横坐标为a,试求切线方程和这个图形的面积.当切点沿曲线趋于无穷远时,该面积的变化趋势如何?
[2013年]设曲线y=f(x)与y=x2-x在点(1,0)处有公切线,则=_________.
某保险公司对多年来的统计资料表明,在索赔户中被盗索赔户占20%,以X表示在随意抽查的100个索赔户中因被盗向保险公司索赔的户数.[附表]设Φ(x)是标准正态分布函数.利用棣莫弗一拉普拉斯中心极限定理,求被盗索赔户不少
设X1,X2,…,X100相互独立且在区间[-1,1]上同服从均匀分布,则由中心极限定理≈______.
随机试题
枝叶稀疏、透光,自然整枝良好,树皮较厚、生长较快。这是______植物的特点。
结核性腹膜炎的病变性质通常属于
孕产妇死亡率较低的疾病是
冠折牙本质暴露拟复合树脂修复,应于
依据《注册安全工程师执业资格制度暂行规定》,注册管理机构对注册工程师的违法行为,视情节轻重,给予警告、()、取消执业资格等处分。
下列选项中,不符合《关于加强建筑意外伤害保险工作的指导意见》要求的是()。
交互作用创新过程模型的研发组织一般为()。
给定资料1.2018年第4期《中直党建》杂志剖析了一起典型案例,题目是《某部委一局级干部为何因微信群被处分》。文章中说:中直机关某部委局级领导干部董某,2015年春节前,召集在北京工作的老乡聚餐。其间,经董某提议,创建了“在京老乡精英会
Whereprobablyarethespeakers?
Mostofusthinkweknowthekindofkidwhobecomesakiller,andmostofthetimewe’reright.Boys【C1】______about85%ofa
最新回复
(
0
)