首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为m×n实矩阵,E为n阶单位矩阵.已知矩阵B=λE+ATA,试证:当λ>0时,矩阵B为正定矩阵.
设A为m×n实矩阵,E为n阶单位矩阵.已知矩阵B=λE+ATA,试证:当λ>0时,矩阵B为正定矩阵.
admin
2019-03-19
50
问题
设A为m×n实矩阵,E为n阶单位矩阵.已知矩阵B=λE+A
T
A,试证:当λ>0时,矩阵B为正定矩阵.
选项
答案
1 因为 B
T
=(λE+A
T
A)
T
=λE+A
T
A=B 所以B为n阶对称矩阵.对于任意的实n维向量x,有 x
T
Bx=X
T
(λE+A
T
A)x=λ
T
x+x
T
A
T
Ax=λx
T
x+(Ax)
T
(Ax) 当x≠0时,有x
T
x>0,(Ax)
T
(Ax)≥0.因此,当λ>0时,对任意的x≠0,有 x
T
Bx=λx
T
x+(Ax)
T
(Ax)>0 即B为正定矩阵. 2 B=λE+A
T
A为实对称矩阵,要证明B为正定矩阵,只要证明B的特征值均大于零.设μ为B的任一特征值,x为对应的特征向量,则Bx=μx,即 (λE+A
T
A)x=μx 或λx+A
T
Ax=μx 两端左乘x
T
,得 λx
T
x+(Ax)
T
(Ax)=μx
T
x 或λ‖x‖
2
+‖Ax‖
2
=μ‖x‖
2
因为x≠0有‖x‖>0,‖Ax‖≥0,所以当λ>0时,有 [*] 可知B的特征值全大于零,故B正定.
解析
转载请注明原文地址:https://kaotiyun.com/show/seP4777K
0
考研数学三
相关试题推荐
设f(x)在[a,b]上连续,在(a,b)上可导,且f(a)=f(b)=1,证明:必存在ξ,η∈(a,b)使得eη—ξ[f(η)+f’(η)]=1。
正项级数an收敛是级数an2收敛的()
设f(x)为可导函数,且满足条件,则曲线y=f(x)在点(1,f(1))处的切线斜率为()
设(Ⅰ)求满足Aξ2=ξ1,A2ξ3=ξ1的所有向量ξ2,ξ3;(Ⅱ)对(Ⅰ)中任意向量ξ2和ξ3,证明ξ1,ξ2,ξ3线性无关。
设向量组α1,α2线性无关,向量组α1+b,α2+b线性相关,证明:向量b能由向量组α1,α2线性表示。
设一元函数f(x)有下列四条性质。①f(x)在[a,b]连续;②f(x)在[a,b]可积;③f(x)在[a,b]存在原函数;④f(x)在[a,b]可导。若用“PQ”表示可由性质P推出性质Q,则有()
求幂级数的收敛域及和函数。
设某商品的需求函数为Q=100—5P,其中价格P∈(0,20),Q为需求量。(Ⅰ)求需求量对价格的弹性Ed(Ed>0);(Ⅱ)推导=Q(1—Ed)(其中R为收益),并用弹性Ed说明价格在何范围内变化时,降低价格反而使收益增加。
微分方程y’+y=e—xcosx满足条件y(0)=0的特解为________。
设n阶矩阵A=(α1,α2,…,αn)的前n-1个列向量线性相关,后n-1个列向量线性无关,且α1+2α2…+(n-1)αn-1=0,b=α1+α2+…+αn.(1)证明方程组AX=b有无穷多个解;(2)求方程组AX=b的通解.
随机试题
“其身正,不令而行;其身不正,虽令不从”一语出自()
A.同性恋者B.性乱者C.注射吸毒者D.长期吸烟者E.患艾滋病母亲所生婴儿艾滋病高危人群不包括的是
施工总承包管理模式中,与分包人的合同一般由()签订。
结构简单,阻力中等,但不适用于有害气体与粉尘共存场合的吸收设备是()。
Voyagecharteringcontactbeissuedbetweentwoparties,NVOCCandcharter.
区域风险是指受特定区域的()等因素影响,而使信贷资产遭受损失的可能性。
下列属于商业银行营业外收入的是()。
教育要遵循个体身心发展的规律。《学记》中“当其可之谓时,时过然后学则勤苦而难成”这句话反映了人身心发展过程中存在的()现象。
已知以F为焦点的抛物线y2=4x上的两点A、B满足,则弦AB的中点到准线的距离为_________.
20世纪后期的学生经常抗议核武器,现在的学生很少抗议核武器,可见学生一定是没有过去那么关心政治了。上述论证基于以下哪项假设?
最新回复
(
0
)