首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为m×n实矩阵,E为n阶单位矩阵.已知矩阵B=λE+ATA,试证:当λ>0时,矩阵B为正定矩阵.
设A为m×n实矩阵,E为n阶单位矩阵.已知矩阵B=λE+ATA,试证:当λ>0时,矩阵B为正定矩阵.
admin
2019-03-19
70
问题
设A为m×n实矩阵,E为n阶单位矩阵.已知矩阵B=λE+A
T
A,试证:当λ>0时,矩阵B为正定矩阵.
选项
答案
1 因为 B
T
=(λE+A
T
A)
T
=λE+A
T
A=B 所以B为n阶对称矩阵.对于任意的实n维向量x,有 x
T
Bx=X
T
(λE+A
T
A)x=λ
T
x+x
T
A
T
Ax=λx
T
x+(Ax)
T
(Ax) 当x≠0时,有x
T
x>0,(Ax)
T
(Ax)≥0.因此,当λ>0时,对任意的x≠0,有 x
T
Bx=λx
T
x+(Ax)
T
(Ax)>0 即B为正定矩阵. 2 B=λE+A
T
A为实对称矩阵,要证明B为正定矩阵,只要证明B的特征值均大于零.设μ为B的任一特征值,x为对应的特征向量,则Bx=μx,即 (λE+A
T
A)x=μx 或λx+A
T
Ax=μx 两端左乘x
T
,得 λx
T
x+(Ax)
T
(Ax)=μx
T
x 或λ‖x‖
2
+‖Ax‖
2
=μ‖x‖
2
因为x≠0有‖x‖>0,‖Ax‖≥0,所以当λ>0时,有 [*] 可知B的特征值全大于零,故B正定.
解析
转载请注明原文地址:https://kaotiyun.com/show/seP4777K
0
考研数学三
相关试题推荐
设A是n阶矩阵,若存在正整数后,使线性方程组Akx=0有解向量α,且Ak—1α≠0。证明:向量组α,Aα,…,Ak—1α是线性无关的。
设二元函数计算二重积分f(x,y)dσ,其中D={(x,y)||x|+|y|≤2}。
求幂级数的收敛域及和函数。
1利用等价无穷小量替换将极限式进行化简,即
函数f(x)=(x2+x一2)|sin2πx|在区间上不可导点的个数是()
极坐标下的累次积分dθ∫02cosθ(rcosθ,rsinθ)rdr等于().
设n阶矩阵A=(α1,α2,…,αn)的前n-1个列向量线性相关,后n-1个列向量线性无关,且α1+2α2…+(n-1)αn-1=0,b=α1+α2+…+αn.(1)证明方程组AX=b有无穷多个解;(2)求方程组AX=b的通解.
设总体X的概率密度为其中参数θ(0<θ<1)未知。X1,X2,…,Xn是来自总体X的简单随机样本,是样本均值。求参数θ的矩估计量。
(2018年)设数列{xn}满足:x1>0,xnexn+1=exn一1(n=1,2,…).证明{xn}收敛,并求.
[2018年]已知求an.
随机试题
审美趣味的外在表现是
下面疾病可表现为前肉饱满的是
急性或亚急性皮炎而无渗液者可选用慢性局限性浸润肥厚性皮肤病者可选用
判断膀胱破裂最简便的检查方法是()
胎儿形成的妊娠周数是
A.2天内B.2~3天C.3天内D.3~4天E.5天
6岁女孩,诊断为“肾病综合征”,因水肿、尿少,给予利尿消肿治疗,患儿发生腹胀,乏力,膝反射减弱,心音低钝,心电图出现U波,治疗中需及时补充
案情:高某(男)与钱某(女)在网上相识,后发展为网恋关系,其间,钱某知晓了高某一些隐情,并以开店缺钱为由,骗取了高某20万元现金。见面后,高某对钱某相貌大失所望,相处不久更感到她性格古怪,便决定断绝关系。但钱某百般纠缠,最后竟以公开隐情相
国家法定休假日、休息日不计入年休假的假期。()
古名“桑泊”指现在的()。
最新回复
(
0
)