首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2006年] 四维向量组α1=[1+a,1,1,1]T,α2=[2,2+a,2,2]T,α3=[3,3,3+a,3]T,α4=[4,4,4,4+a]T.问a为什么数时,α1,α2,α3,α4线性相关?在α1,α2,α3,α4线性相关时求其一个极大线性无
[2006年] 四维向量组α1=[1+a,1,1,1]T,α2=[2,2+a,2,2]T,α3=[3,3,3+a,3]T,α4=[4,4,4,4+a]T.问a为什么数时,α1,α2,α3,α4线性相关?在α1,α2,α3,α4线性相关时求其一个极大线性无
admin
2019-07-16
65
问题
[2006年] 四维向量组α
1
=[1+a,1,1,1]
T
,α
2
=[2,2+a,2,2]
T
,α
3
=[3,3,3+a,3]
T
,α
4
=[4,4,4,4+a]
T
.问a为什么数时,α
1
,α
2
,α
3
,α
4
线性相关?在α
1
,α
2
,α
3
,α
4
线性相关时求其一个极大线性无关组,并且把其余向量用该极大线性无关组线性表出.
选项
答案
解一 若α
1
,α
2
,α
3
,α
4
线性相关,即|α
1
,α
2
,α
3
,α
4
|=0,而|α
1
,α
2
,α
3
,α
4
|=a
3
(a+10), 于是当a=0或-10时,α
1
,α
2
,α
3
,α
4
线性相关. 当a=0时,α
1
是α
1
,α
2
,α
3
,α
4
的极大无关组,且α
2
=2α
1
,α
3
=3α
1
,α
4
=4α
1
. 当a=-10时,用初等行变换求其极大无关组. [*] 显然β
1
,β
2
,β
3
为β
1
,β
2
,β
3
,β
4
的一个极大线性无关组,且β
4
=-β
1
-β
2
-β
3
.由于矩阵的初等行变换不改变矩阵列向量组之间的线性关系,故α
1
,α
2
,α
3
是α
1
,α
2
,α
3
,α
4
的一个极大无关组,且α
4
=-α
1
-α
2
-α
3
. 解二 设A=[α
1
,α
2
,α
3
,α
4
],对A进行初等行变换,得到 [*] 当a=0时,A的秩等于1,因而α
1
,α
2
,α
3
,α
4
线性相关.此时α
1
为α
1
,α
2
,α
3
,α
4
的一个极大线性无关组,且α
2
=2α
1
,α
3
=3α
1
,α
4
=4α
1
. 当a≠0时,再对B施以初等行变换,得到 [*] 如果a≠-10,C的秩为4,从而A的秩也为4,故α
1
,α
2
,α
3
,α
4
线性无关. 如果a=-10,C的秩为3,从而A的秩也为3,故α
1
,α
2
,α
3
,α
4
线性相关. 由于v
2
,v
3
,v
4
为v
1
,v
2
,v
3
,v
4
的一个极大线性无关组,且v
1
=-v
2
-v
3
-v
4
,因矩阵的初等行变换不改变矩阵列向量组之间的关系,故α
2
,α
3
,α
4
为α
1
,α
2
,α
3
,α
1
的一个极大线性无关组,且α
1
=-α
2
-α
3
-α
4
.
解析
转载请注明原文地址:https://kaotiyun.com/show/jNJ4777K
0
考研数学三
相关试题推荐
设实对称矩阵A=要使得A的正,负惯性指数分别为2,1,则a满足的条件是______。
设f(x)=则f(x)=_______.
将抛物线y=x2一x与x轴及直线x=c(c>1)所围成平面图形绕x轴旋转一周,所得旋转体的体积Vx等于弦op(p为抛物线与直线x=c的交点)绕x轴旋转所得锥体的体积V锥,则c的值为______.
向量组α1,α2,…,αm线性无关的充分必要条件是().
设A,B为n阶正定矩阵.证明:A+B为正定矩阵.
设A为三阶实对称矩阵,A的每行元素之和为5,AX=0有非零解且λ1=2是A的特征值,对应特征向量为(一1,0,1)T.求A的其他特征值与特征向量;
设f(x)∈C[0,1],f(x)>0.证明积分不等式:In∫01f(x)dx≥∫01lnf(x)dx.
设随机变量(X,Y)在区域D={(x,y,)|0≤x≤2,0≤y≤1)上服从均匀分布,令(1)求(U,V)的联合分布;(2)求ρUV.
证明不等式:xarctanx≥ln(1+x2).
设f(x)=∫0tanxarctant2dt,g(x)=x-sinx,当x→0时,比较这两个无穷小的关系.
随机试题
创造政绩的根本途径是
关于无排卵型功血的子宫内膜病理变化,下列哪项是正确的
患者,男,48岁,患慢性乙肝已8年,近1个月来病情明显加重,怀疑为慢性重型肝炎,下列结果中不能作为诊断依据的是
某女,30岁,4小时前口服敌百虫。查体:躁动,瞳孔缩小,肺部湿啰音,错误的处置是()
根据《中华人民共和国药品管理法实施条例》的规定,申请进口的药品,未在生产国家或者地区获得上市许可的
(2008年)下列能够产生抗生素的种类是()。
我国将导游这一职业列入《中国职业分类大典》是在20世纪()。
马克思主义哲学的中国化体现为()。
①用小小的木制手织机,固定在房角一柱上,一面伸出憔悴的手来②做母亲的全按照一个地方的风气,当街坐下,织男子们束腰用的板带过日子③当白日照到这长街时,这一条街静静的像在午睡④敏捷地把手中犬骨线板压着手织机的一端,退着粗粗的棉线,一面用一个棕叶刷子为孩子
针对当时建筑施工中工伤事故频发的严峻形势,国家有关部门颁布了《建筑业安全生产实施细则》(以下简称《细则》)。但是,在《细则》颁布实施两年间,覆盖全国的统计显示,在建筑施工中伤亡职工的数量每年仍有增加。这说明,《细则》并没有得到有效的实施。以下哪项如果为真,
最新回复
(
0
)