首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有齐次线性方程组 试问a为何值时,该方程组有非零解,并求其通解.
设有齐次线性方程组 试问a为何值时,该方程组有非零解,并求其通解.
admin
2019-07-19
37
问题
设有齐次线性方程组
试问a为何值时,该方程组有非零解,并求其通解.
选项
答案
设齐次方程组的系数矩阵为A,则 [*]a
n+1
那么,Ax=0有非零解 丨A丨=0 a=0或a=-1/2(n+1)n. 当a=0时,对系数矩阵A作初等变换,有 [*] 故方程组的同解方程组为x
1
+x
2
+…+x
n
=0,由此得基础解系为 η
1
=(-1,1,0,…,0)
T
, η
1
=(-1,0,1,…,0)
T
, …, η
n-1
=(-1,0,0,…,1)
T
. 于是方程组的通解为x=k
1
η
1
+…+k
n-1
η
n-1
,其中k
1
,k
21
,...,k
n-1
为任意常数. 当a=1/2(n+1)n时,对系数矩阵作初等行变换,有 [*] [*] 故方程组的同解方程组为[*] 由此得基础解系为η=(1,2,…,n)
T
, 于是方程组的通解为x=kη,其中k为任意常数.
解析
确定参数,使包含n个未知量和n个方程的齐次线性方程组有非零解,通常用两个方法:一是对其系数矩阵作初等行变换化成阶梯形;再就是由其系数行列式为零解出参数值.本题的关键是参数n有两个俯,对每个值都要讨论.
转载请注明原文地址:https://kaotiyun.com/show/jNc4777K
0
考研数学一
相关试题推荐
经过两个平面∏1:x+y+1=0,∏2:x+2y+2z=0的交线,并且与平面∏3:2x一y一z=0垂直的平面方程是____________.
由曲线x=a(t—sint),y=a(1一cost)(0≤t≤2π)(摆线)及x轴围成平面图形的面积S=__________.
设f(x)在[0,a](a>0)上非负、二阶可导,且f(0)=0,f’’(x)>0,为y=f(x),y=0,x=a围成区域的形心,证明:.
设向量组α1=[a11,a21……an1]T,α2=[a12,a22……an2]T,…,αs=[a1s,a2s……ans]T.证明:向量组α1,α2
证明In,其中n为自然数.
设X,Y是两个相互独立且均服从正态分布的随机变量,求E(|X-Y|)与D(|X-Y|).
设有齐次线性方程组Aχ=0和Bχ=0,其中A,B均为m×n矩阵,现有4个命题:①若Aχ=0的解均是Bχ=0的解,则r(a)≥r(B);②若r(A)≥r(B),则Aχ=0的解均是Bχ=0的解;③若Aχ=0与Bχ=0同解,则r(A
随机地取两个正数x和y,这两个数中的每一个都不超过1,试求x与y之和不超过1,积不小于0.09的概率.
现有k个人在某大楼的一层进入电梯,该楼共n+1层,电梯在任一层时若无人下电梯则电梯不停(以后均无人再入电梯),现已知每个人在任何一层(当然不包括第一层)下电梯是等可能的且相互独立,求电梯停止次数的平均值.
求由曲线y=4一x2与x轴围成的部分绕直线x=3旋转一周所成的几何体的体积.
随机试题
下面谱例为某合唱曲片段,其中不协和音程的数量是()。
天南星的功效是
有关会阴湿热敷溶液的温度及药液浓度,下列正确的是
中国特色社会主义伟大旗帜,具有强大的()
函数y=x3一6x上切线平行于X轴的点是()。
A、B企业签订一份运输合同,运输费用4万元,装卸费用0.5万元,该合同应纳印花税()。
有一个A(2)×B(2)的实验设计结果如下图,对该结果最可能的描述是()。
简单评价多元智力理论及其意义。
PhilanthropyIthasbecomeanAmericantraditionthatthosewhoattaingreatwealthreturnsomeofittothepublicthrough
Thesecretaryworkedlateintothenight,(prepare)______alongspeechforthepresident.
最新回复
(
0
)