首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)为(一∞,+∞)上的连续奇函数,且单调增加,F(x)=∫0x(2t一x)f(x一t)dt,则F(x)是
设f(x)为(一∞,+∞)上的连续奇函数,且单调增加,F(x)=∫0x(2t一x)f(x一t)dt,则F(x)是
admin
2018-11-22
56
问题
设f(x)为(一∞,+∞)上的连续奇函数,且单调增加,F(x)=∫
0
x
(2t一x)f(x一t)dt,则F(x)是
选项
A、单调增加的奇函数.
B、单调增加的偶函数.
C、单调减小的奇函数.
D、单调减小的偶函数.
答案
C
解析
对被积函数作变量替换u=x一t,就有
F(x)=∫
0
x
(2t一x)f(x—t)dt=∫
0
x
(x一2u)f(u)du=x∫
0
x
f(u)du一2∫
0
x
uf(u)du.
由于f(x)为奇函数,故∫
0
x
f(u)du为偶函数,于是x∫
0
x
f(u)du为奇函数,又因uf(u)为偶函数,从而∫
0
x
uf(u)du为奇函数,所以F(x)为奇函数.又
F’(x)=∫
0
x
f(u)du+xf(x)一2xf(x)=∫
0
x
f(u)du一xf(x),
由积分中值定理知在0与x之间存在ξ使得∫
0
x
f(u)du=xf(ξ).从而F’(x)=x[f(ξ)一f(x)],无论x>0,还是x<0,由f(x)单调增加,都有F’(x)<0,从而应选C.
其实,由F’(x)=∫
0
x
f(u)du一xf(x)=∫
0
x
[f(u)一f(x)]du及f(x)单调增加也可得F’(x)<0.
转载请注明原文地址:https://kaotiyun.com/show/t7g4777K
0
考研数学一
相关试题推荐
计算曲面积分I=2x3dydz+2y2dzdx+3(z2-1)dxdy,其中∑是曲面z=1-x2-y2(z≥0)的上侧。
已知随机变量X的概率密度为f(x)=,-∞<x<+∞,则(X2)=_______。
已知方程组有解,证明:方程组无解。
已知2CA-2AB=C-B,其中A=则C3=________。
过坐标原点作曲线y=lnx的切线,该切线与曲线y=lnx及x轴围成平面图形D。(Ⅰ)求D的面积A;(Ⅱ)求D绕直线x=e旋转一周所得旋转体的体积V。
设a是常数,则级数()
过坐标原点作曲线y=ex的切线,该切线与曲线y=ex以及x轴围成的向x轴负向无限伸展的平面图形,记为D。(Ⅰ)求D的面积A;(Ⅱ)求D绕直线x=1旋转一周所成的旋转体的体积V。
计算二重积分xarctanydxdy,其中积分区域D是由抛物线y=x2和圆x2+y2=2及x轴在第一象限所围成的平面区域。
下列反常积分收敛的是().
设A、B、C三个事件两两独立,则A、B、C相互独立的充分必要条件是()
随机试题
某企业经批准从2007年1月1日起发行2年期面值为100元的债券10000张。发行价格确定为面值发行。债券年利率为6%(实际利率与合同利率一致),每年7月1日和1月1日为付息日。该债券所筹集资金全部用于新生产线的建设,该生产线于2008年6月底完工交付使用
少数急性有机磷中毒患者发生中间综合征,其出现时间为
系统性红斑狼疮患者的皮肤护理,下列哪项不妥?()
对于持有和买卖上海证券交易所上市证券的投资者,未办理指定交易的投资者的证券暂由()托管,其红利、股息、债息、债券兑付款在办理指定交易后可领取。
请用不超过150字的篇幅,概括出给定资料所反映的主要问题。用不超过350字的篇幅,提出解决给定资料所反映问题的方案。要有条理地说明,要体现针对性和可操作性。
首要特质
论信息系统项目的需求管理和范围管理在信息系统项目的开发过程中,人们越来越体会到需求管理和范围管理的重要性,含糊的需求和范围经常性的变化使信息系统项目的甲乙双方吃尽了苦头,这使得人们急于寻找良策以管理范围。请围绕“需求管理和范围管理”论题,分
假定当前盘符下有两个如下文本文件:文件名a1.txta2.txt内容123#321#则下面程序段执行后的结果为#include"stdio.h"voidfc(FILE
Shewantstoapplyforanewjobasherpresentjobisnot(interest)______.
TheWonderfulWorldofSmallThere’saquietrevolutiongoingon,anditsnameisnanotechnology.Ahostofinnovationsare
最新回复
(
0
)