首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有两个非零矩阵A=[a1,a2,…,an]T,B=[b1,b2,…,bn]T. (1)计算ABT与ATB; (2)求矩阵ABT的秩r(ABT); (3)设C=E-ABT.其中E为n阶单位阵.证明:CTC=E—BAT一ABT+BBT
设有两个非零矩阵A=[a1,a2,…,an]T,B=[b1,b2,…,bn]T. (1)计算ABT与ATB; (2)求矩阵ABT的秩r(ABT); (3)设C=E-ABT.其中E为n阶单位阵.证明:CTC=E—BAT一ABT+BBT
admin
2018-11-11
96
问题
设有两个非零矩阵A=[a
1
,a
2
,…,a
n
]
T
,B=[b
1
,b
2
,…,b
n
]
T
.
(1)计算AB
T
与A
T
B;
(2)求矩阵AB
T
的秩r(AB
T
);
(3)设C=E-AB
T
.其中E为n阶单位阵.证明:C
T
C=E—BA
T
一AB
T
+BB
T
的充要条件是A
T
A=1.
选项
答案
(1)[*],A
T
B=a
1
b
1
+a
2
b
2
+…+a
n
b
n
. (2)因AB
T
各行(或列)是第1行(列)的倍数,又A,B皆为非零矩阵,故r(AB
T
)=1. (3)由于C
T
C=(E一AB
T
)
T
(E一AB
T
)=(E一AB
T
)(E一AB
T
)=E—BA
T
一AB
T
+BA
T
AB
T
,故若要求C
T
C=E-BA
T
一AB
T
+BB
T
,则BA
T
AB
T
一BB
T
=O,B(A
T
A一1)B
T
=O,即 (A
T
A一1)BB
T
=O. 因为B≠O,所以BB
T
≠O.故C
T
C=E-BA
T
一AB
T
+BB
T
的充要条件是A
T
A=1.
解析
转载请注明原文地址:https://kaotiyun.com/show/jRj4777K
0
考研数学二
相关试题推荐
计算∫Ly2dx,其中L为半径为a,圆心为原点,方向取逆时针方向的上半圆周.
n阶对称矩阵的全体V对于矩阵的线性运算构成一个维线性空间.给出n阶可逆矩阵P,以A表示V中的任一元素,试证合同变换TA=PTAP,是V中的线性变换.
设奇函数f(x)在[一1,1]上具有二阶导数,且f(1)=1,证明:存在η∈(一1,1),使得f’’(η)+f’(η)=1.
设函数f(x)连续,且f(0)≠0,求极限
设函数f(x)在[0,3]上连续,在(0,3)内存在二阶导数,且证明存在η∈(0,2),使f(η)=f(0);
(2006年)设f(χ,y)与φ(χ,y)均为可微函数,且φ′y(χ,y)≠0.已知(χ0,y0)是f(χ,y)在约束条件φ(χ,y)=0下的一个极值点,下列选项正确的是【】
(2012年)设(Ⅰ)计算行列式|A|;(Ⅱ)当实数a为何值时,方程组Aχ=β有无穷多解,并求其通解.
若函数f(x)=asinx+处取得极值,则a=___________。
设f(x)连续,φ(x)=∫01f(xt)dt,且=A,(A为常数),求φ’(x),并讨论φ’(x)在x=0处的连续性.
已知A=,求A的特征值、特征向量,并判断A能否相似对角化,说明理由.
随机试题
甲与乙签订房屋买卖合同,将一幢房屋卖与乙。双方约定,一方违约应支付购房款35%的违约金。但在交房前甲又与丙签订合同,将该房卖与丙,并与丙办理了过户登记手续。下列选项中,正确的有()。
某游客见有一位佩戴某旅行社导游证的人员在招徕客人,即参加该旅游团。在旅游过程中,合法权益受到损害,向有关部门投诉。经查,该导游是非法经营者雇用,其旅行社不知晓此事。旅游行政管理部门对该导游的处罚正确的是:()
持续升温的“史学文化热”,使“历史”从古奥难解、枯燥繁冗的专业研究著述中“_______”,以鲜活饱满、形象多姿的通俗形式,走进千家万户,在很大程度上_______了将历史概念化、抽象化的僵化模式,为进一步探讨表述和处理历史现象的方法,提供了一个崭新的视角
下列对“冬天麦盖三层被,来年枕着馒头睡”的理解,错误的是:
Thissummer,forthefirsttime,EmoryCollegeletfreshmenpicktheirownroommatesinanonlineroommate-selectionsystemthat
简述方差和标准差的意义。
没线性方程组AX=kβ1+β2有解,其中A则k为().
设y=ln(4x+1),求y(n).
TakeaminutetofamiliarizeyourselfwiththeAtlanticMeridionalOverturningCirculation(AMOC).【F1】It’samassiveoceancurr
December1DearMr.Dias,Furthertoyourletterof22November,Iamveryhappytosaythatwearenowinapositiontoco
最新回复
(
0
)