首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1989年分)设f(χ)=sinχ-∫0χ(χ-t)f(t)dt,其中f为连续函数,求f(χ).
(1989年分)设f(χ)=sinχ-∫0χ(χ-t)f(t)dt,其中f为连续函数,求f(χ).
admin
2016-05-30
84
问题
(1989年分)设f(χ)=sinχ-∫
0
χ
(χ-t)f(t)dt,其中f为连续函数,求f(χ).
选项
答案
原方程可改写为 f(χ)=sinχ-χ∫
0
χ
f(t)dt+∫
0
χ
tf(t)dt 上式两端对χ求导得 f′(χ)=cosχ=∫
0
χ
f(t)dt-χf(χ)+χ(f)χ=cosχ-∫
0
χ
f(t)dt (*) 两端再对χ求导得f〞(χ)=-sinχ-f(χ) 即f(χ)+f(χ)=-sinχ 这是一个二阶线性非齐次方程,由原方程知f(0)=0,由(*)式知f′(0)=1. 特征方程为r-1=0,r=±i 齐次通解为[*]=C
1
sinχ+C
2
cosχ 设非齐次方程特解为y
*
=χ(asinχ+bcosχ),代入 f〞(χ)+f(χ)=-sinχ得 a=0,b=[*] 则非齐次方程的通解为 y=C
1
sinχ+C
2
cosχ+[*]cosχ 由初始条件y(0)=0和y′(0)=1可知 C
1
=[*],C
2
=0
解析
转载请注明原文地址:https://kaotiyun.com/show/jot4777K
0
考研数学二
相关试题推荐
设二元函数F(x,y)具有二阶连续的偏导数,且F(x0,y0)=0,F’x(x0,y0)=0,F’y(x0,y0)>0.若一元函数y=y(x)是由方程F(x,y)=0所确定的在点(x0,y0)附近的隐函数,则x0是函数y=y(x)的极小值点的一个充分条件是
直线L:=z+1绕直线L1:旋转一周所形成的曲面方程是________.
函数f(x)[a,b]上的连续函数,区域D={(x,y)|a≤x≤b,a≤y≤b},证明:ef(x)-f(y)dσ≥(b-a)2.
某企业在两个相互分割的市场上出售同一产品,两个市场的需求函数分别为P1=18-2Q1,P2=12-Q2,其中P1和P2分别表示该产品在两个市场的价格(单位:万元/吨),Q1和Q2分别表示该产品在两个市场的销售量(单位:吨),且该企业生产该产品的总成本函数为
求二元函数f(x,y)=(5-2x+y)的极值.
设L是柱面方程x2+y2=1与平面z=x+y的交线,从z轴正向往z轴负向看去为逆时针方向,则曲线积分∮Lxzdx+xdy+dz=________.
设y(x)为微分方程y″-4y′+4y=0满足初始条件y(0)=1,y′(0)=2的特解,则∫01y(x)dx=________.
设f(x)=a1ln(1+x)+a2ln(1+2x)+…+anln(1+nx),其中a1,a2,…,an为常数,且对一切x有|f(x)|≤|ex-1|.证明:|a1+2a2+…+nan|≤1.
设f(x)为连续函数,且,则F’(x)=________。
求下列微分方程的通解。y’-xy’=a(y2+y’)
随机试题
新疆拥有22个机场,为国内拥有机场最多的省份。()
公证的特征
人民法院审判下列哪些案件,应当由审判员3至5人组成合议庭进行?()
地方各级人民政府、政府统计机构和有关部门以及各单位的负责人依照《统计法》和统计制度提供的统计资料,根据具体情况可以自行修改。()
下列关于欧元期货合约的说法,正确的是()。
2019年9月,赵某、钱某、孙某、李某、周某五人共同出资设立甲有限责任公司(简称甲公司)。公司章程规定:(1)公司注册资本500万元。(2)赵某、钱某、孙某各以现金90万元出资;李某以自有房屋作价100万元出资;周某以专利权作价130万
文化变迁是指由于族群社会内部的发展或由于不同族群之间的接触而引起的一个族群文化的改变。由于发明或借用而增添新的事物,由此导致旧事物丧失,是一种文化变迁:由于生态环境及社会生活变化,在没有替代物的情况下有些文化因素自动消失,也属于文化变迁。根据上述定义,下列
“六三运动”
清朝绝大多数义字狱判刑都是比照()。
Youaregoingtoreadalistofheadingsandatextaboutleadership.ChooseaheadingfromthelistA—Fthatbestfitstheme
最新回复
(
0
)