首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)连续,且F(x)=∫0x(x-2t)f(t)dt.证明: (1)若f(x)是偶函数,则F(x)为偶函数; (2)若f(x)单调不增,则F(x)单调不减.
设f(x)连续,且F(x)=∫0x(x-2t)f(t)dt.证明: (1)若f(x)是偶函数,则F(x)为偶函数; (2)若f(x)单调不增,则F(x)单调不减.
admin
2019-01-05
42
问题
设f(x)连续,且F(x)=∫
0
x
(x-2t)f(t)dt.证明:
(1)若f(x)是偶函数,则F(x)为偶函数;
(2)若f(x)单调不增,则F(x)单调不减.
选项
答案
(1)设f(-x)=f(x), 因为F(-x)=∫
0
-x
(-x-2t)f(t)dt[*]∫
0
x
(-x+2u)f(-x)(-du) =∫
0
x
(x-2u)f(u)du=F(x), 所以F(x)为偶函数. F(x)=∫
0
-x
(x-2t)f(t)dt=∫
0
x
f(t)dt-2∫
0
x
tf(t)dt, F’(x)=∫
0
x
f(t)-xf(t)=x[f(ξ)-f(x)],其中ξ介于0与x之间, 当x<0时,x≤ξ≤0,因为f(x)单调不增,所以F’(x)≥0, 当x≥0时,0≤ξ≤x,因为f(x)单调不增,所以F’(x)≥0, 从而F(x)单调不减.
解析
转载请注明原文地址:https://kaotiyun.com/show/jrW4777K
0
考研数学三
相关试题推荐
f(x)在[1,1]上三阶连续可导,且f(一1)=0,f(1)=1,f’(0)=0.证明:存在ξ∈(一1,1),使得f"’(ξ)=3.
设随机变量X和Y的联合概率分布为则X和Y的协方差cov(X,Y)=________.
设f(x)=则f(x)的可去间断点的个数为().
已知三阶方阵A的三个特征值为1,一1,2,相应特征向量分别为则P一1AP=________.
设函数y=y(x)由方程组
在xOy坐标平面上,连续曲线L过点M(1,0),其上任意点P(x,y)(x≠0)处的切线斜率与直线OP的斜率之差等于ax(常数a>0)。(Ⅰ)求L的方程;(Ⅱ)当L与直线y=ax所围成平面图形的面积为时,确定a的值。
已知三阶矩阵A的第一行是(a,b,c),a,b,c不全为零,矩阵B=(k为常数),且AB=0,求线性方程组Ax=0的通解。
设A,B为同阶方阵。(Ⅰ)若A,B相似,证明A,B的特征多项式相等;(Ⅱ)举一个二阶方阵的例子说明(Ⅰ)的逆命题不成立;(Ⅲ)当A,B均为实对称矩阵时,证明(Ⅰ)的逆命题成立。
设总体X的概率分布为为未知参数,对总体抽取容量为10的一组样本,其中五个取1,三个取2,一个取0。则θ的矩估计值为________,最大似然估计值为________。
下列无穷小中阶数最高的是().
随机试题
行政指导
A.前列腺素B.类固醇C.肾上腺素D.胰岛素通过具有酪氨酸激酶活性的膜表面受体传递信号的激素是
王某,男,40岁。患者咳嗽阵作半月,症见牵引胸胁作痛,咳痰黄稠带血,咯血鲜红,急躁易怒,大便秘结,小便短赤,舌质红,苔薄黄,脉弦数。其病机为
需用无菌检查法检查染菌量的制剂
小儿肥胖的标准为( )。
()是指导致行为或事件的行为者本身可以控制的因素。
4,3/2,20/27,7/16,36/125,()
国画家()以画虾而著称于世。
数据库管理系统通常提供授权功能来控制不同用户访问数据的权限,这主要是为了实现数据库的______。
A、OnThursdaynight.B、OnFridaymorning.C、OnMondaynight.D、OnThursdaymorning.A
最新回复
(
0
)