首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)连续,且F(x)=∫0x(x-2t)f(t)dt.证明: (1)若f(x)是偶函数,则F(x)为偶函数; (2)若f(x)单调不增,则F(x)单调不减.
设f(x)连续,且F(x)=∫0x(x-2t)f(t)dt.证明: (1)若f(x)是偶函数,则F(x)为偶函数; (2)若f(x)单调不增,则F(x)单调不减.
admin
2019-01-05
98
问题
设f(x)连续,且F(x)=∫
0
x
(x-2t)f(t)dt.证明:
(1)若f(x)是偶函数,则F(x)为偶函数;
(2)若f(x)单调不增,则F(x)单调不减.
选项
答案
(1)设f(-x)=f(x), 因为F(-x)=∫
0
-x
(-x-2t)f(t)dt[*]∫
0
x
(-x+2u)f(-x)(-du) =∫
0
x
(x-2u)f(u)du=F(x), 所以F(x)为偶函数. F(x)=∫
0
-x
(x-2t)f(t)dt=∫
0
x
f(t)dt-2∫
0
x
tf(t)dt, F’(x)=∫
0
x
f(t)-xf(t)=x[f(ξ)-f(x)],其中ξ介于0与x之间, 当x<0时,x≤ξ≤0,因为f(x)单调不增,所以F’(x)≥0, 当x≥0时,0≤ξ≤x,因为f(x)单调不增,所以F’(x)≥0, 从而F(x)单调不减.
解析
转载请注明原文地址:https://kaotiyun.com/show/jrW4777K
0
考研数学三
相关试题推荐
A,B均是n阶矩阵,且A2一2AB=E,则秩r(AB一BA+A)=________.
[*]利用+C求之较简.
设I=|xy|dxdy,其中D是以a为半径、以原点为圆心的圆,则I的值为().
计算二重积分(x2+y)dσ,其中D是由x2+y2=2y的上半圆,直线x=一1,x=1及x轴围成的区域.
设f(x)在[a,b]上连续,且f(x)>0,又F(x)=∫axf(t)dt+∫6x证明:(1)F’(x)≥2;(2)F(x)=0在[a,b]内有且仅有一个实根.
设二维随机变量(X,Y)的分布函数为Ф(2x+1)Ф(2y—1),其中Ф(x)为标准正态分布函数,则(X,Y)~N________。
已知正、负惯性指数均为1的二次型f=xTAx通过合同变换x=Py化为f=yTBy,其中B=则a=________。
广义积分
设函数y=y(x)在(一∞,+∞)内具有二阶导数,且y’≠0,x=x(y)是y=y(x)的反函数。(Ⅰ)试将x=x(y)所满足的微分方程=0变换为y=y(x)满足的微分方程;(Ⅱ)求变换后的微分方程满足初始条件y(0)=0,y’(0)=的特解。
随机试题
下列填筑料施工宜采用进占法铺料的是()。
在1992年12月,泰德维尔的购物中心修理并改善了其停车场的照明设施。1993年,该停车场的偷车案量和试图偷车案量比前一年下降了76%。由于潜在的小偷通常受较好的照明条件的威慑,偷车案量的下降归功干照明的改善。以下哪项如果为真,最能强化上述论证?
对因商事活动、产权转移,权利许可证照授受等行为而书立、领受的应征税凭证的一种税是()。
由项目产出物产生并在项目范围内计算的经济效益是项目的()。
延长工作时间的限制条件是()。
某工厂与订货商签订合同,约定订货商在订单生产完成50%和80%的时候分别支付两笔货款。在派6名工人生产4天后,完成了订单的8%。如增派9名工人加入生产,则订货商在支付第一笔和第二笔货款间的时间间隔为()天。(假定所有工人工作效率相同)
下面是某求助者的SCL-90的测验结果:总分:225阴性项目25该求助者的测验结果显示()。
对后现代文化有一种概括,就是:中心变成了边缘,系统变成了断裂,整体变成了碎片,深度变成了平面,价值变成了虚无。在后现代艺术中,复制取代了原创,操作取代了想象,破碎取代了整体,过程取代了作品。艺术形象完全变成了模型的模型、模仿的模仿。这段文字反映出作者对后现
A、 B、 C、 D、 B将每个图形看成刻度尺,从左到右,0~8标数,第一个图形在2、4、6位置上标记,且2+4=6,题干图形都有类似的规律,选项中只有B符合。
亚历山大二世签署废除农奴制法令的根本目的是()。
最新回复
(
0
)