首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二维随机变量(X,Y)的联合概率密度 令Z=max{X,Y},求: (1)Z的分布函数; (2)在X>x(x>0)的条件下,求P{Z≤z|X>x}.
设二维随机变量(X,Y)的联合概率密度 令Z=max{X,Y},求: (1)Z的分布函数; (2)在X>x(x>0)的条件下,求P{Z≤z|X>x}.
admin
2018-09-20
38
问题
设二维随机变量(X,Y)的联合概率密度
令Z=max{X,Y},求:
(1)Z的分布函数;
(2)在X>x(x>0)的条件下,求P{Z≤z|X>x}.
选项
答案
(1)[*]当x>0,y>0时, f
X
(x)=∫
-∞
+∞
f(x,y)dy=∫
0
+∞
6e
-2x-3y
dy=2e
-2x
,f
Y
(y)=∫
-∞
+∞
f(x,y)dx=∫
0
+∞
6e
2x-3y
dx=3e
-3y
, [*] 由此可见,X,Y相互独立,且分别服从参数为2和3的指数分布. X,Y的分布函数分别为: [*] 因为Z=max{X,Y},显然,当z<0时,F
Z
(z)=0, 当z≥0时, F
Z
(z)=P{max{X,Y}≤z}=P{X≤z,Y≤z}=F
X
(z)F
Y
(z)=(1一e
-2z
)(1一e
-3z
), 所以 [*] (2)由Z=max{X,Y}易知,当z≤x时,P{Z≤z|X>z}=0. 当z>x时, P{X>x,Z≤z}=P{x<X≤z,Y≤z}=P{x<X≤z)P{Y≤z} =(e
-2x
一e
-2z
)(1一e
-3z
), 从而P{Z≤z|X>x}=[*]=[1一e
-2(z-x)
](1一e
-3z
).
解析
转载请注明原文地址:https://kaotiyun.com/show/jtW4777K
0
考研数学三
相关试题推荐
求下列函数f(x)在x=0处带拉格朗日余项的n阶泰勒公式:(Ⅰ);(Ⅱ)f(x)=exsinx
设二维随机变量(X,Y)在区域D={(x,y)|0≤x≤1,0≤y≤2}上服从均匀分布,令Z=min(X,Y),求EZ与DZ.
四元非齐次线性方程组AX=b有三个解向量α1,α2,α3且r(A)=3,设α1+α2=α2+α3=求方程组AX=b的通解.
参数a取何值时,线性方程组有无数个解?求其通解.
设α,β为四维非零列向量,且α⊥β,令A=αβT,则A的线性无关特征向量个数为()
设总体X的密度函数为f(x)=,(X1,X2,…,Xn)为来自总体X的简单随机样本.求θ的矩估计量;
设A是n阶矩阵,α1,α2,…,αn是n维列向量,且αn≠0,若Aα1=α2,Aα2=α3,…,Aαn一1=αn,Aαn=0.证明:α1,α2,…,αn线性无关;
设总体X~F(x,θ)=样本值为1,1,3,2,1,2,3,3,求θ的矩估计和最大似然估计.
设总体X服从正态分布N(μ,σ2)(σ>0),X1,X2,…,Xn为来自总体X的简单随机样本,令|Xi一μ|,求Y的数学期望与方差.
随机试题
元政策又叫()
患者男,67岁。患有咳嗽咳痰病史15年,2天来胸闷症状明显加重,登一层楼或爬缓坡时常出现明显呼吸困难。患者最常见的并发症是
该患者节律性中上腹痛、反酸、嗳气2年余,最可能的诊断是该患者当日中午出现了
A.阴阳B.表里C.水火D.寒热E.虚实
隐患排查治理是生产经营单位安全生产管理的重要内容。对本单位事故隐患排查治理工作全面负责的是单位的()。
建设工程质量责任主体包括( )。
背景材料:拟建某写字楼,两午后建成交付使用,资金来源为自有,营业期10年,出租率为100%。基本数据如下:①固定资产投资45000万元(第一年投入25000万元,第二年投入20000万元,均为自有资金投入);②第三年注入流动资金5000万元
2017年3月15号,是中国民事立法上具有里程碑意义的日子,第十二届全国人大第五次会议通过了()
在刑罚执行过程中,对于具有()表现的犯罪分子,可以减刑。
下面关于数据库三级模式结构的叙述中,正确的是()。
最新回复
(
0
)