首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二维随机变量(X,Y)的联合概率密度 令Z=max{X,Y},求: (1)Z的分布函数; (2)在X>x(x>0)的条件下,求P{Z≤z|X>x}.
设二维随机变量(X,Y)的联合概率密度 令Z=max{X,Y},求: (1)Z的分布函数; (2)在X>x(x>0)的条件下,求P{Z≤z|X>x}.
admin
2018-09-20
25
问题
设二维随机变量(X,Y)的联合概率密度
令Z=max{X,Y},求:
(1)Z的分布函数;
(2)在X>x(x>0)的条件下,求P{Z≤z|X>x}.
选项
答案
(1)[*]当x>0,y>0时, f
X
(x)=∫
-∞
+∞
f(x,y)dy=∫
0
+∞
6e
-2x-3y
dy=2e
-2x
,f
Y
(y)=∫
-∞
+∞
f(x,y)dx=∫
0
+∞
6e
2x-3y
dx=3e
-3y
, [*] 由此可见,X,Y相互独立,且分别服从参数为2和3的指数分布. X,Y的分布函数分别为: [*] 因为Z=max{X,Y},显然,当z<0时,F
Z
(z)=0, 当z≥0时, F
Z
(z)=P{max{X,Y}≤z}=P{X≤z,Y≤z}=F
X
(z)F
Y
(z)=(1一e
-2z
)(1一e
-3z
), 所以 [*] (2)由Z=max{X,Y}易知,当z≤x时,P{Z≤z|X>z}=0. 当z>x时, P{X>x,Z≤z}=P{x<X≤z,Y≤z}=P{x<X≤z)P{Y≤z} =(e
-2x
一e
-2z
)(1一e
-3z
), 从而P{Z≤z|X>x}=[*]=[1一e
-2(z-x)
](1一e
-3z
).
解析
转载请注明原文地址:https://kaotiyun.com/show/jtW4777K
0
考研数学三
相关试题推荐
两名射手各向自己的靶独立射击,直到有一次命中时该射手才(立即)停止射击.如果第i名射手每次命中概率为pi(0<pi<1,i=1,2),则两射手均停止射击时脱靶(未命中)总数的数学期望为_________.
对于任意二随机变量X和Y,与命题“X和Y不相关”不等价的是
甲、乙两人相约于某地在12:00~13:00会面,设X,Y分别是甲、乙到达的时间,且假设X和Y相互独立,已知X,Y的概率密度分别为求先到达者需要等待的时间的数学期望.
设A=其中ai≠aj(i≠j,i,j=1,2,…,n),则线性方程组ATx=B的解是______.
设总体X的概率密度为f(x)=,其中未知参数θ>0,设X1,X2,…,Xn是来自总体X的简单样本.该估计量是否是无偏估计量?说明理由.
设A为m阶正定矩阵,B为m×n阶实矩阵.证明:BTAB正定的充分必要条件是r(B)=n.
设总体X的概率分布为是未知参数.用样本值3,1,3,0,3,1,2,3求θ的矩估计值和最大似然估计值.
设总体X~N(μ,σ12),y~N(μ,σ22),且X,Y相互独立,来自总体X,Y的样本均值为样本方差为S12,S22,记的数学期望.
设二阶常系数线性微分方程y"+ay’+by=cex有特解y=e2x+(1+x)ex,确定常数a,b,c,并求该方程的通解.
随机试题
甲委托乙销售一批手镯并交付,乙经甲同意转委托给丙,丙以其名义与丁签订买卖合同,约定将这批手镯以高于市场价10%的价格卖给丁,并赠其一批箱包。丙因此与戊签订箱包买卖合同。丙依约向丁交付手镯,但因戊不能向丙交付箱包,导致丙无法向丁交付手镯。丁拒绝向丙支付手镯款
变形组件在定义时,如果未使用任何外部参照,则在装配中可以被定位和约束,否则不能被约束或移动。
单代号网络图中,箭线一般用来表示()。
基金收益分配的形式一般包括()。
UDP对上层提供面向连接、端到端可靠的通信服务。()
()是公共管理的起点,决定了公共行政走向公共管理的必然态势。
公文的结尾通常采用的形式是()。
Internet上的计算机地址有两种表示形式:______与域名。
Wouldyoumind________quietforalittlewhile?Iamdoingmycoursework.
A—moneymarketB—realestateC—globalleadershippositionD—accountingpracticesE—productattributesF—economiesofscaleG—Int
最新回复
(
0
)