首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵A=可逆,α=为A*对应的特征向量. (1)求a,b及α对应的A*的特征值; (2)判断A可否对角化.
设矩阵A=可逆,α=为A*对应的特征向量. (1)求a,b及α对应的A*的特征值; (2)判断A可否对角化.
admin
2018-11-11
40
问题
设矩阵A=
可逆,α=
为A
*
对应的特征向量.
(1)求a,b及α对应的A
*
的特征值;
(2)判断A可否对角化.
选项
答案
(1)显然α也是矩阵A的特征向量,令Aα=λα,则有 [*] |A|=12,设A的另外两个特征值为λ
2
,λ
3
,由[*]得λ
2
=λ
3
=2. α对应的A
*
的特征值为[*]=4. (2)2E-A=[*],因为r(2E-A)=2,所以λ
2
=λ
3
=2只有一个线性无关的特征向量,故A不可以对角化.
解析
转载请注明原文地址:https://kaotiyun.com/show/jxj4777K
0
考研数学二
相关试题推荐
设3阶实对称矩阵A的特征值是1,2,3;矩阵A的属于特征值1,2的特征向量分别是α1=(一1,一1,1)T,α2=(1,一2,一1)T.求矩阵A.
设矩阵求B+2E的特征值与特征向量,其中A*为A的伴随矩阵,E为3阶单位矩阵.
设二维随机变量(X,Y)在矩形域D={(x,y)0≤x≤2,0≤y≤1}上服从均匀分布(如图4一1),记求U和V的相关系数ρXY。
设函数y=y(x)由参数方程所确定,其中f(u)可导,且f’(0)≠0,求
在上半平面求一条向上凹的曲线,其上任一点P(x,y)处的曲率等于此曲线在该点的法线段PQ长度的倒数(Q是法线与x轴的交点),且曲线在点(1,1)处的切线与x轴平行.
设f(x)在点x0的某邻域内有定义,且f(x)在x0间断,则在点x0处必定间断的函数是()
设函数f(u)在(0,+∞)内有二阶导数,且(1)验证(2)若f(1)=0,f’(1)=1,求函数f(u)的表达式.
设函数f(x)满足f(1)=f’(1)=2.求极限.
设A为m×n实矩阵,E为n阶单位矩阵.已知矩阵B=λE+ATA,试证:当λ>0时,矩阵B为正定矩阵.
设A为n阶矩阵,λ1和λ2是A的两个不同的特征值.x1,x2是分别属于λ1和λ2的特征向量,试证明:x1+x2不是A的特征向量.
随机试题
声波穿过两种不同材料的界面时会发生折射,这与下列哪项有关
用抓阄的方法随机抽取部分观察单位组成样本,此方法为将总体中各观察单位编号按一定标志排列起来,然后按一定间隔距离抽取观察单位。此方法为
下列各项,不属于痰蒙心神证临床表现的是
法律部门是法律体系的有机组成部分,划分法律部门的主要标准是( )。
导致所有权消灭的情形有()。
甲公司拟在厂区内建造一幢新厂房,有关资料如下:(1)2018年1月1日向银行借入专门借款5000万元,期限为3年,年利率为6%,每年1月1日付息。(2)除专门借款外,甲公司还有两笔一般借款,分别为公司于2017年12月1日借入的长期借款1000万元
职业道德不允许()在对审计客户施加控制的实体中拥有直接经济利益或重大间接经济利益,否则将对独立性产生无法防范的严重不利影响。
宋代欧阳修写出描述牡丹的专著有()。
Kerberos是一种(44)。
Therewere________.
最新回复
(
0
)