首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上单调减少且f(x)>0,证明
设f(x)在[0,1]上单调减少且f(x)>0,证明
admin
2016-01-11
31
问题
设f(x)在[0,1]上单调减少且f(x)>0,证明
选项
答案
由f(x)>0知∫
0
1
xf(x)dx>0,∫
0
1
f(x)dx>0. 从而为证明此不等式只须证∫
0
1
xf
2
(x)dx∫
0
1
f(x)dx≤∫
0
1
f
2
(x)dx∫
0
1
xf(x)dx. 故令 I=∫
0
1
f
2
(x)dx∫
0
1
xf(x)dx一∫
0
1
xf
2
(x)dx∫
0
1
f(x)dx =∫
0
1
xf(x)dx∫
0
1
f
2
(y)dy一∫
0
1
f(x)dx∫
0
1
yf
2
(y)dy [*] 其中D={(x,y)|0≤x≤1,0≤y≤1}. 由于D关于y=x对称,则[*] 以上两式相加,得[*] 由于f(x)在[0,1]上单调减少且f(x)>0,所以 当y≤x时f(y)≥f(x),因而f(x)f(y)(x-y)[f(y)-f(x)]≥0; 当y≥x时f(y)≤f(x),因而f(x)f(y)(x-y)[f(y)-f(x)]≥0. 故2I≥0即I>0,因此所要证明的不等式成立.
解析
转载请注明原文地址:https://kaotiyun.com/show/xe34777K
0
考研数学二
相关试题推荐
设X,Y是两个随机变量,且P{X≤1,Y≤1}=4/9,P{X≤1}=P{Y≤1}=5/9,则P{min(X,Y)≤1}=().
设f(x,y)=x+Y+1在D={(x,y)|x2+y2≤a2,a>0}上取得最大值+1,求a的值.
设A是3阶矩阵,3维非零列向量α不是A的特征向量,且A2α+Aα-2α=0,f(x)=|xE-A|,则存在x0∈(-2,1)使得曲线y=f(x)在(x0,f(x0))处的切线垂直于()
设3阶矩阵A的特征值均为1,将A的第1列加到第2列得B,则|A*+B*|=()
设随机变量X与Y相互独立,P{Y=-1}=P{Y=1}=,X的概率密度f(x)满足f’(x)+f(x)=0(σ>0),Z=XY.求f(x);
设A=,b=,方程组Ax=b有无穷多解.(Ⅰ)求a的值及Ax=b的通解;(Ⅱ)求一个正交变换x=Qy,化二次型f(x1,x2,x3)=xTAx为标准形.(Ⅲ)求一个可逆线性变换将(Ⅱ)中的f(x1,x2,x3)化为规范形.
设n维实列向量α满足αTα=2,A,B,E均为n阶矩阵,且A(E-2ααT)=B,则()
设矩阵满足CTAC=B.求a的值;
设f(x)在[0,1]上有二阶连续导数,且f(1)=f’(1)=0.证明:存在不同的ξ,η∈(0,1),使得ξ2f”(ξ)=2f’(η)(ξ-1).
设由自动生产线加工的某种零件的内径X(毫米)服从正态分布N(μ,1),内径小于10或大于12为不合格品,其余为合格产品,销售合格品获利,销售不合格产品亏损,已知销售利润T(单位:元)与销售零件的内径X有如下关系:
随机试题
住院病人自行沐浴时,下列哪项不妥
乳剂的主要作用不包括
患者,女,19岁,未婚。经来先期,量少,色红,质稠;手足心热,咽干口燥;舌质红,苔少,脉细数。治疗应首选
背景某安装工程公司承接某地一处大型吊装运输总承包项目,有80~200t大型设备26台。工程内容包括大型设备卸船后的陆路运输及现场的吊装作业。施工作业地点在南方沿海地区,工程施工特点为:工程量大、工期紧、高空作业多、运输和吊装吨位重。项目
国务院反洗钱行政主管部门是()。
政府出台新的福利政策,但有部分退休干部不在政策范围内,现在他们来集体上访。面对这种情况,你作为接待人员,怎么处理?
(2017山东)解决当今人类遭遇的各种难题和危机,单靠一种文明价值的智慧和能量,常常显得______。只有充分挖掘和利用各种不同禀性的文明价值资源,才能帮助人类破解难题、走出危机。填入画横线部分最恰当的一项是:
设f(χ)在[0,+∞)上连续,在(0,+∞)内可导且满足f(0)=0,f(χ)≥0,f(χ)≥f′(χ)(χ>0),求证:f(χ)≡0.
计算机使用的图像格式有很多种,但目前在Web网页中使用的图像文件主要有两种,它们是
Somepeoplehavetheage-olddesiretoputthejokeonothers.Dihydrogenmonoxidecanacceleratecorrosionandrusting,andca
最新回复
(
0
)