首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A,B,C是n阶方阵,满足r(C)+r(B)=n,(A+E)C=O,B(AT一2E)=O.证明:A~A,并求A及|A|.
设A,B,C是n阶方阵,满足r(C)+r(B)=n,(A+E)C=O,B(AT一2E)=O.证明:A~A,并求A及|A|.
admin
2016-03-05
93
问题
设A,B,C是n阶方阵,满足r(C)+r(B)=n,(A+E)C=O,B(A
T
一2E)=O.证明:A~A,并求A及|A|.
选项
答案
由已知条件,r(C)+r(B)=n,(A+E)C=O,B(A
T
一2E)=O.若r(C)=n,则r(B)=0,在(A+E)C=O两边右乘C
一1
,得A+E=0,即A=一E.故A~A=一E.若r(B)=n,则r(C)=0,在B(A
T
一2E)=O两边左乘B
一1
,得A
T
一2E=O,即A
T
=2E.故A=(2E)
T
=2E—A=2E.若r(C)=r,r≠n,r≠0,则r(B)=n—r.将矩阵C进行列分块,方程组(A+E)x=0至少有r个线性无关解向量,即A有特征值λ=一1,且至少是r重根.对B(A
T
一2E)=O两边转置,可得(A一(2E)
T
)B
T
=(A一2E)B
T
. 因r(B
T
)=r(B)=n一r,那么将B
T
进行列分块,则方程组(A一2E)x=0至少有n—r个线性无关解,即A有特征值λ=2,且至少有n—r重根.因r(B)+r(C)=n,故λ=一1是r重特征值;λ=2是n一r重特征值,且A有n个线性无关特征向量.故A—A,其中[*]综上可知,|A|=|A|=(一1)
r
2
n-r
.
解析
转载请注明原文地址:https://kaotiyun.com/show/ra34777K
0
考研数学二
相关试题推荐
设数列{an}满足a0=2,nan=an-1+n-1(n≥1).证明:
设f(x)在[0,1]上有一阶连续导数,且f(0)=0,∫01xf(x)dx=0.证明:方程x[f(x)]2+f’(x)∫0xtf(t)dt=0在(0,1)内至少有两个不同的实根.
设a1,a2,a3是四元非齐次线性方程组Ax=b的三个解向量,且r(A)=3,a1+a2=(2,0,-2,4)T,a1+a3=(3,1,0,5)T,则Ax=b的通解为________.
设f(x)在[0,1]上二阶可导,f(0)=0,且证明:存在一点η∈(0,1),使得f”η)=2.
设3阶实对称矩阵A=(a1,a2,a3)有二重特征值λ1=λ2=1,且a1+2a2=a3,A*是A的伴随矩阵.求矩阵A;
设x1>0,xn+1=ln(1+xn),n=1,2,….证明xn存在,并求此极限;
试求由直线x=1/2与抛物线y2=2x所围成的平面图形绕y=1旋转一周所得旋转体的体积和表面积.
设a=2i-j+k,b=i+3j-k,试在a,b所确定的平面内,求一个与a垂直的单位向量.
设(1)计算行列式|A|;(2)当实数a为何值时,方程组Ax=β有无穷多解,并求其通解.
随机试题
断面可见大理石样花纹的饮片有
奥氏体通常用符号()表示。
胸阳痹阻型胸痛发展为阳气虚衰、心阳欲脱的最佳治疗方剂是心血瘀阻型胸痛轻证的治疗方剂宜
在釉质结构中,抗龋能力较强的一层是
按照最高人民法院《关于违反“五个严禁”规定的处理办法》的规定,下列说法不正确的是哪些选项?()
背景材料:某项目经理部承接了一项道路、桥梁综合性大型工程,并将其中的部分工程按合同分包给其他单位施工。由于分包单位对安全管理缺乏认识,在施工过程中常出现安全隐患项目经理部为避免安全事故的发生,组织了分包单位安全生产培训班。在培训班结业时,对分包单位的主管领
按照记账凭证的用途,可分为()。
生产流水线在更多的时候是指生产制造线,即将一些物料按生产加工工艺连接起来,在这条生产线上对各种零配件进行加工。
甲离家出走6年杳无音信,则下列表述正确的是()。
在市场交易的数据分析中,能发现一组数据项之间的密切度的数据挖掘方法是
最新回复
(
0
)