首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设随机变量X和Y的概率分布分别为 P(X2=Y2)=1。 (Ⅰ)求二维随机变量(X,Y)的概率分布; (Ⅱ)求Z=XY的概率分布; (Ⅲ)求X与Y的相关系数ρXY。
设随机变量X和Y的概率分布分别为 P(X2=Y2)=1。 (Ⅰ)求二维随机变量(X,Y)的概率分布; (Ⅱ)求Z=XY的概率分布; (Ⅲ)求X与Y的相关系数ρXY。
admin
2018-01-12
45
问题
设随机变量X和Y的概率分布分别为
P(X
2
=Y
2
)=1。
(Ⅰ)求二维随机变量(X,Y)的概率分布;
(Ⅱ)求Z=XY的概率分布;
(Ⅲ)求X与Y的相关系数ρ
XY
。
选项
答案
(Ⅰ)由于P(X
2
=Y
2
)=1,因此P(X
2
≠Y
2
)=0。 故P(X=0,Y=1)=0,可知 P(X=1,Y=1)=P(X=1,Y=1)+P(X=0,Y=1)=P(Y=1)=[*] 再由P(X=1,Y=0)=0可知 P(X=0,Y=0)=P(x=1,Y=0)+P(X=0,Y=0)=P(Y=0)=[*] 同理,由P(X=0,Y=一1)=0可知 P(X=1,Y=一1)=P(X=1,Y=一1)+P(X=0,Y=一1)=P(Y=一1)=[*] 这样,就可以写出(X,Y)的联合分布如下: [*] (Ⅱ)Z=XY可能的取值有一1,0,1。其中 P(Z=一1)=P(X=1,Y=一1)=[*],P(Z=1)=P(X=1,Y=1)=[*] 则有P(Z=0)=[*]。 因此,Z=XY的分布律为 [*] (Ⅲ)E(X)=[*],E(Y)=0,E(XY)=0,Cov(X,Y)=E(XY)一E(X).E(Y)=0, 所以 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/k3X4777K
0
考研数学三
相关试题推荐
设随机变量x服从参数为λ的指数分布,则
某设备由三大部件构成。在设备运转中各部件需要调整的概率相应为0.10,0.20和0.30.设各部件的状态相互独立,以X表示同时需要调整的部件数,试求E(X)和D(X)。
设二维随机变量(X,Y)的概率密度为(Ⅰ)求P{X>2Y);(Ⅱ)求Z=X+Y的概率密度fz(z)。
设随机变量X服从正态分布N(μ1,σ12),随机变量y服从正态分布N(μ2,σ22),且P{|X—μ1|<1)>P{|Y一μ2|<1}则必有
已知总体X的密度函数为其中θ,β为未知参数,X1,…,Xn为简单随机样本,求θ和β的矩估计量.
已知总体X是离散型随机变量,X可能取值为0,1,2且P{X=2}=(1一θ)2,E(X)=2(1一θ)(θ为未知参数).(I)试求X的概率分布;(Ⅱ)对X抽取容量为10的样本,其中5个取1,3个取2,2个取0,求θ的矩估计值、最大似然估
已知f(x)和g(x)在[a,b]上连续,在(a,b)内具有二阶导数,且在(a,b)内存在相等的最大值,又设f(a)=g(a),f(b)=g(b),试证明:存在ξ∈(a,b)使得f’’(ξ)=g’’(ξ)。
函数的可去间断点的个数为
袋中有n张卡片,分别记有号码1,2,…,n,从中有放回地抽取k张,以X表示所得号码之和,求EX,DX.
设从均值为μ,方差σ2>0的总体中分别抽取容量为n1,n2的两个独立样本,样本均值分别为证明:对于任何满足条件a+b=1的常数a,b,T=是μ的元偏估计量,并确定常数a,b,使得方差DT达到最小.
随机试题
需要的特点有()
欧阳修《五代史伶官传序》是一篇()
A、舒肝和胃口服液B、乌贝颗粒C、沉香舒气丸D、胃逆康胶囊E、胃苏颗粒用于肝胃不和郁热证所致的胸脘胁痛,嗳气呃逆
魏《新律》比汉《九章律》有哪些发展?
当90>RSI>80时,应该强烈买入。()
用凝练的词句概括所游览景点的独特之处,给游客留下突出印象的导游手法称为“画龙点睛法”。()
租箱人在租箱合同期满之后作价买下所租用的箱子的方式是()。
你为什么报考这个单位?你的目标是什么?
判断一个人的心理健康状况时应兼顾个体内部协调与对外良好适应两个方面。()
【B1】【B9】
最新回复
(
0
)