首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知函数f(x,y)具有二阶连续偏导数,且f(1,y)=0,f(x,1)=0,(x,y)dxdy=a,其中D={(x,y)|0≤x≤1,0≤y≤1},计算二重积分I=xyf"xy(x,y)dxdy.
已知函数f(x,y)具有二阶连续偏导数,且f(1,y)=0,f(x,1)=0,(x,y)dxdy=a,其中D={(x,y)|0≤x≤1,0≤y≤1},计算二重积分I=xyf"xy(x,y)dxdy.
admin
2016-01-15
33
问题
已知函数f(x,y)具有二阶连续偏导数,且f(1,y)=0,f(x,1)=0,
(x,y)dxdy=a,其中D={(x,y)|0≤x≤1,0≤y≤1},计算二重积分I=
xyf"
xy
(x,y)dxdy.
选项
答案
[*] 首先考虑∫
0
1
xff"
xy
(x,y)dx,注意这里是把变量y看做常数的,故有 ∫
0
1
xyf"
xy
(x,y)dx=y∫
0
1
xdf’
y
(x,y) =xyf’
y
(x,y)|
0
1
一∫
0
1
yf’
y
(x,y)dx =yf’
y
(1,y)一∫
0
1
yf’
y
(x,y)dx. 由f(1,y)=f(x,1)=0易知f’(1,y)=f’(x,1)=0.故 xyf"
xy
(x,y)dx=一yf’
y
(x,y)dx. 所以 [*]xyf"
xy
(x,y)dxdy=dyxyf"
xy
(x,y)dx=一dyyf’
y
(x,y)dx, 对该积分交换积分次序可得 一∫
0
1
dy∫
0
1
yf’
y
(x,y)dx=一∫
0
1
dx∫
0
1
yf’
y
(x,y)dy. 再考虑积分∫
0
1
yf’
y
(x,y)dy,注意这里是把变量戈看做常数的,故有 ∫
0
1
yf’
y
(x,y)dy=∫
0
1
ydf(x,y) =yf(x,y)|
0
1
一∫
0
1
f(x,y)dy =一∫
0
1
f(x,y)dy, 因此 [*]xyf"
xy
(x,y)dxdy=—∫
0
1
dx∫
0
1
yf’
y
(x,y)dy =∫
0
1
dx∫
0
1
f(x,y)dy =[*]f(x,y)dxdy=a.
解析
转载请注明原文地址:https://kaotiyun.com/show/kJw4777K
0
考研数学一
相关试题推荐
设f(x)在(一∞,+∞)内有定义,且对于任意x与y均有f(x+y)=f(x)ey+f(y)ex,又设f’(0)存在且等于a(a≠0),试证明对任意的x∈(一∞,+∞)f’(x)都存在,并求f(x)。
设A为n阶正定矩阵,α1,α2,…,αn为n维非零列向量,且满足αiTA-1αj=0(i≠j;i,j=1,2,…,n).试证:向量组α1,α2,…,αn线性无关.
设D=是正定矩阵,其中A,B分别是m,n阶矩阵.记P=(1)求PTDP.(2)证明B-CTA-1C正定.
设f(x)二阶可导,且f"(x)>0,证明:当x≠0时,f(x)>x.
计算二重积分.
计算定积分.
设在(-∞,+∞)内连续曲线y=f(x)关于点(a,0)(a≠0)对称,则积分∫a+1a-1f(x)dx=________。
设P为椭球面S:x2+y2+z2-yz=1上的动点,若S在点P处的切平面与xOy面垂直,求点P的轨迹C,并计算曲面积分,其中∑为椭球面S位于曲线C上方的部分.
曲面x2+cos(xy)+yz+x=0在点(0,1,-1)处的切平面方程为().
斜边长为2a的等腰直角三角形平板,铅直地沉没在水中,且斜边与水面相齐,设重力加速度为g,水密度为ρ,则该平板一侧所受的水的压力为________.
随机试题
文学产权包括()
访谈法的优点包括()
不属于阻塞性通气功能障碍特点的呼吸功能指标是
患者女性,37岁,平素身体健康,突发性右下腹痛1小时,伴恶心呕吐,体温36.8℃,右下腹压痛明显,申请腹部超声检查。作为超声接诊医生,根据该患临床症状,应该特别注意检查的脏器是
()项目的资本金比例为20%及以上。
我国《期货交易管理条例》规定,设立期货公司,必须经期货交易所会员大会批准。()
政府采购招标后没有供应商投标或者没有合格标的或者重新招标未能成立的,可以采用()方式采购。
结合案例试分析希捷供应链管理的特点。结合案例试分析供应链管理的职能。
已知a、b都是正数,且(a2+1)(b2+4)=8ab,则的值为:
—Wouldyoulikeacupoftea?—______.Aglassofwaterwilldo.
最新回复
(
0
)