首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是一个n阶方阵,满足A2=A,R(A)=r,且A有两个不同的特征值. (Ⅰ)试证A可对角化,并求对角阵A; (Ⅱ)计算行列式|A-2E|.
设A是一个n阶方阵,满足A2=A,R(A)=r,且A有两个不同的特征值. (Ⅰ)试证A可对角化,并求对角阵A; (Ⅱ)计算行列式|A-2E|.
admin
2019-08-21
68
问题
设A是一个n阶方阵,满足A
2
=A,R(A)=r,且A有两个不同的特征值.
(Ⅰ)试证A可对角化,并求对角阵A;
(Ⅱ)计算行列式|A-2E|.
选项
答案
(I)设λ是A的特征值,由于A
2
=A,所以λ
2
=λ,且A有两个不同的特征值,从而A的特征值为0和1. 又因为A
2
=A,即A(A—E)=O,故R(A)+R(A—E)=n,事实上,因为A(A—E)=O,所以R(A)+R(A—E)≤n另一方面,由于E—A与A—E的秩相同,则有n=R(E)=R[(E—A)+A]≤R(A)+R(E—A)=R(A)+R(A—E),从而R(A)+R(A—E)=n. 当λ=1时,因为R(A—E)=n—R(A)=n—r,从而齐次线性方程组(E—A)x=0的基础解系含有r个解向量,因此,A属于特征值1有r个线性无关特征向量,记为η
1
,η
2
,…,η
r
. 当λ=0时,因为R(A)=r,从而齐次线性方程组(0·E—A)x=0的基础解系含n一r个解向量. 因此,A属于特征值0有n—r个线性无关的特征向量,记为η
r+1
,η
r+2
,…,η
n
. 于是η
1
,η
2
,…,η
n
是A的n个线性无关的特征向量,所以A可对角化,并且对角阵为 [*]
解析
只需证明A有n个线性无关的特征向量,即可说明A可相似对角化,而对角阵主对角线上的元素即为A的特征值.
转载请注明原文地址:https://kaotiyun.com/show/kKN4777K
0
考研数学二
相关试题推荐
设z=esinxy,则dz=____________.
设函数则函数z(x,y)在点(0,0)处()
设函数u=u(x,y)满足及u(x,2x)=x,u’1(x,2x)=x2,u有二阶连续偏导数,则u"11(x,2x)=()
如图3—4所示,设抛物线y=ax2+bx,当0≤x≤1时y≥0,若该抛物线与x轴以及直线x=1所围成的封闭图形的面积为,试求a,b的值,使此平面图形绕x轴旋转所得旋转体的体积最小.
已知u(x,y)=其中f,g具有二阶连续导数,求zuxx"+yuxy".
设函数其中g(x)二阶连续可导,且g(0)=1.讨论f’(x)在x=0处的连续性.
设A=E+αβT,其中α=[a1,a2,…,an]T≠0,β=[b1,b2,…,bn]T≠0,且αTβ=2.求可逆矩阵P,使得P-1AP=A.
设函数f(x)=并记F(x)=∫0xf(t)dt(0≤x≤2),试求F(x)及∫f(x)dx.
设f(x,y)连续,且f(x,y)=ex2+y2+xyxyf(x,y)dxdy,其中D表示区域0≤x≤1,0≤y≤1,则=()[img][/img]
设则B=()
随机试题
招募广告在设计上要注意______,这四个字母分别表示注意、兴趣、欲望、行动。
Notonly______verywell,butalso______well.
男性30岁,节律性间断上腹隐痛3年,加重2天,15h前开始黑便3次,量约1000克左右,BP70/50mmHg,P120次/分,Hb90g/L。首选的治疗是
目前临床上检测抗核抗体主要采用
下列哪项不是疳证的主要临床表现
()是投资于建设项目的组织和个人。
在一座汽车总装厂房中,喷漆工段占总装厂房的面积比例约9%,喷漆工段采用防火分隔和自动灭火设施保护,厂房的生产火灾危险性类别应按()类划分。
阅读以下文章,回答问题:地震发生时,最基本的现象是地面的连续振动,主要是明显的晃动。极震区的人在感到大的晃动之前,有时首先感到上下跳动。这是因为地震波从地内向地面传来,纵波首先到达的缘故。横波接着产生大振幅的水平方向的晃动,是造成地震灾害的主要原因。
______leavestheofficelastshouldturnofftheairconditioner.
A、Tofurtherherstudy.B、Tofindajob.C、Toquitherjob.D、Togobacktoschool.B
最新回复
(
0
)