首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是一个n阶方阵,满足A2=A,R(A)=r,且A有两个不同的特征值. (Ⅰ)试证A可对角化,并求对角阵A; (Ⅱ)计算行列式|A-2E|.
设A是一个n阶方阵,满足A2=A,R(A)=r,且A有两个不同的特征值. (Ⅰ)试证A可对角化,并求对角阵A; (Ⅱ)计算行列式|A-2E|.
admin
2019-08-21
91
问题
设A是一个n阶方阵,满足A
2
=A,R(A)=r,且A有两个不同的特征值.
(Ⅰ)试证A可对角化,并求对角阵A;
(Ⅱ)计算行列式|A-2E|.
选项
答案
(I)设λ是A的特征值,由于A
2
=A,所以λ
2
=λ,且A有两个不同的特征值,从而A的特征值为0和1. 又因为A
2
=A,即A(A—E)=O,故R(A)+R(A—E)=n,事实上,因为A(A—E)=O,所以R(A)+R(A—E)≤n另一方面,由于E—A与A—E的秩相同,则有n=R(E)=R[(E—A)+A]≤R(A)+R(E—A)=R(A)+R(A—E),从而R(A)+R(A—E)=n. 当λ=1时,因为R(A—E)=n—R(A)=n—r,从而齐次线性方程组(E—A)x=0的基础解系含有r个解向量,因此,A属于特征值1有r个线性无关特征向量,记为η
1
,η
2
,…,η
r
. 当λ=0时,因为R(A)=r,从而齐次线性方程组(0·E—A)x=0的基础解系含n一r个解向量. 因此,A属于特征值0有n—r个线性无关的特征向量,记为η
r+1
,η
r+2
,…,η
n
. 于是η
1
,η
2
,…,η
n
是A的n个线性无关的特征向量,所以A可对角化,并且对角阵为 [*]
解析
只需证明A有n个线性无关的特征向量,即可说明A可相似对角化,而对角阵主对角线上的元素即为A的特征值.
转载请注明原文地址:https://kaotiyun.com/show/kKN4777K
0
考研数学二
相关试题推荐
设zf(2x—y)+g(x,xy),其中函数f(t)二阶可导,g(u,v)具有连续二阶偏导数,求
设z=esinxy,则dz=____________.
设A是n阶正定矩阵,证明:|E+A|>1.
求2y-=(χ-y)ln(χ-y)确定的函数y=y(χ)的微分dy.
设A是3阶矩阵,λ1=1,λ2=2,λ3=3是A的特征值,对应的特征向量分别是又β=[1,2,3]T,计算:Anβ.
计算定积分
函数与直线x=0,x=t(t>0)及y=0围成一曲边梯形。该曲边梯形绕x轴旋转一周得一旋转体,其体积为V(t),侧面积为S(t),在x=t处的底面积为F(t)。求的值;
设n阶方阵A,B,C满足关系式ABC=E,其中E是n阶单位阵,则必有()
过坐标原点作曲线y=ex的切线,该切线与曲线y=ex以及x轴围成的向z轴负向无限伸展的平面图形记为D.求:(I)D的面积A;(Ⅱ)D绕直线X=1旋转一周所成的旋转体的体积V.
随机试题
关于CIF,根据{2010年国际贸易术语解释通则》,下列说法错误的是()
合资经营
下列不属于莎士比亚四大悲剧的是()
A.左旋多巴B.金刚烷胺C.溴隐亭D.硫必利E.安坦氯丙嗪引起的迟发性运动障碍的解救药
解热镇痛抗炎药的主要副作用 A.肝损伤 B.肾损伤 C.胃肠道损害 D.粒细胞减少 E.心脑血管意外罗非昔布可引起
下列关于法的效力的表述中,正确的有()。
排水固结法处理地基,当采用ψ7cm袋装砂井和塑料排水板作为竖向通道时,竖向排水通道长度主要取决于工程要求和土层情况,对以地基稳定性控制的工程,竖向排水通道深度至少应超过最危险滑动面()m。
某房地产开发公司开发一住宅项目,取得该土地使用权所支付的金额3000万元,房地产开发成本4000万元,利息支出500万元(能提供金融机构贷款证明),所在省人民政府规定,能提供金融机构贷款证明的,其房地产开发费用扣除比例为4%,该公司计算土地增值税时允许扣除
为了使DHCP服务器能为Windows平台的主机服务,必须要在LINUX服务器上加上一条255.255.255.255的路由(因为Windows平台的主机都是以广播方式搜索DHCP服务器)为了以后每次启动时自动执行,应该在/etc/rtc.d/rc.loc
A、Theyaregoodatfightingantibiotics.B、Theyareresistanttoanyantibiotics.C、Theycannotsurviveacoupledrugs.D、Theya
最新回复
(
0
)