首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是一个n阶方阵,满足A2=A,R(A)=r,且A有两个不同的特征值. (Ⅰ)试证A可对角化,并求对角阵A; (Ⅱ)计算行列式|A-2E|.
设A是一个n阶方阵,满足A2=A,R(A)=r,且A有两个不同的特征值. (Ⅰ)试证A可对角化,并求对角阵A; (Ⅱ)计算行列式|A-2E|.
admin
2019-08-21
59
问题
设A是一个n阶方阵,满足A
2
=A,R(A)=r,且A有两个不同的特征值.
(Ⅰ)试证A可对角化,并求对角阵A;
(Ⅱ)计算行列式|A-2E|.
选项
答案
(I)设λ是A的特征值,由于A
2
=A,所以λ
2
=λ,且A有两个不同的特征值,从而A的特征值为0和1. 又因为A
2
=A,即A(A—E)=O,故R(A)+R(A—E)=n,事实上,因为A(A—E)=O,所以R(A)+R(A—E)≤n另一方面,由于E—A与A—E的秩相同,则有n=R(E)=R[(E—A)+A]≤R(A)+R(E—A)=R(A)+R(A—E),从而R(A)+R(A—E)=n. 当λ=1时,因为R(A—E)=n—R(A)=n—r,从而齐次线性方程组(E—A)x=0的基础解系含有r个解向量,因此,A属于特征值1有r个线性无关特征向量,记为η
1
,η
2
,…,η
r
. 当λ=0时,因为R(A)=r,从而齐次线性方程组(0·E—A)x=0的基础解系含n一r个解向量. 因此,A属于特征值0有n—r个线性无关的特征向量,记为η
r+1
,η
r+2
,…,η
n
. 于是η
1
,η
2
,…,η
n
是A的n个线性无关的特征向量,所以A可对角化,并且对角阵为 [*]
解析
只需证明A有n个线性无关的特征向量,即可说明A可相似对角化,而对角阵主对角线上的元素即为A的特征值.
转载请注明原文地址:https://kaotiyun.com/show/kKN4777K
0
考研数学二
相关试题推荐
求内接于椭球面的长方体的最大体积.
已知线性方程组(I)及线性方程组(Ⅱ)的基础解系ξ1=[一3,7,2,0]T,ξ2=[一1,一2,0,1]T.求方程组(Ⅰ)和(Ⅱ)的公共解.
已知问a为何值时,α4能由α1,α2,α3线性表出,并写出它的表出式.
设向量组线性相关,但任意两个向量线性无关.求参数t.
求微分方程xy"+3y’=0的通解.
设A=E+αβT,其中α=[a1,a2,…,an]T≠0,β=[b1,b2,…,bn]T≠0,且αTβ=2.求可逆矩阵P,使得P-1AP=A.
设函数f(x)在[0,1]上二阶可导,且f(0)=f’(0)=f’(1)=0,f(1)=1.求证:存在ξ∈(0,1),使|f"(ξ)|≥4.
厂商的总收益函数和总成本函数分别为R(Q)=30Q-3Q2C(Q)=Q2+2Q+2厂商追求最大利润,政府对产品征税,求:(1)厂商纳税前的最大利润及此时的产量和价格.(2)征税收益最大值及此时的税率t.(3)厂商纳税后的最大利润及此时产品的价格
设下述命题成立的是()
设则f(x)的不可导点为___________。
随机试题
某企业设备的运行周期为253小时,在其运行期间共运行了236小时,其中发生了5次故障,故障时间分别为3.4小时,3小时,3.8小时,2.6小时,4.2小时。试求该设备的故障率。
在需要层次理论中,地位属于()
直到不久前,科学家们才排除了月球上存在生物的可能性。
某成年男性因全身肌痛、面部水肿、视力障碍来医院就诊。自述1个月前曾参加过一个大型会议,会议期间曾聚餐,与会者中已有数十人出现全身肌痛等症状。最可能的诊断是
下列有关抗菌药作用机制的叙述哪项是错误的
建设项目管理的类型可以按( )几方面划分。
国库是办理预算收入的收纳、划分、留解和库款支拨的专门机构,也称中央国库。()
相对于其他职业生涯发展阶段来说,员工在()阶段更加注重自己的经济收入。
某投资者计划2019年年初购置一处现行市场价格为1000万元的房产。由于资金不足,房主提出了四种延期付款方案供其选择。方案一:2020年至2029年,每年年初付款155万元。方案二:2024年至2030年,每年年初付款280万元。方案三
卢梭在《论人类不平等的起源和基础》中说道:“我认为,在人类的一切知识中,最有用但也最不完善的知识就是关于人的知识。”马克思的唯物史观则破解了“人是什么”之谜,指出人的本质在其现实性上是()。
最新回复
(
0
)