设A是一个n阶方阵,满足A2=A,R(A)=r,且A有两个不同的特征值. (Ⅰ)试证A可对角化,并求对角阵A; (Ⅱ)计算行列式|A-2E|.

admin2019-08-21  34

问题 设A是一个n阶方阵,满足A2=A,R(A)=r,且A有两个不同的特征值.
(Ⅰ)试证A可对角化,并求对角阵A;
(Ⅱ)计算行列式|A-2E|.

选项

答案(I)设λ是A的特征值,由于A2=A,所以λ2=λ,且A有两个不同的特征值,从而A的特征值为0和1. 又因为A2=A,即A(A—E)=O,故R(A)+R(A—E)=n,事实上,因为A(A—E)=O,所以R(A)+R(A—E)≤n另一方面,由于E—A与A—E的秩相同,则有n=R(E)=R[(E—A)+A]≤R(A)+R(E—A)=R(A)+R(A—E),从而R(A)+R(A—E)=n. 当λ=1时,因为R(A—E)=n—R(A)=n—r,从而齐次线性方程组(E—A)x=0的基础解系含有r个解向量,因此,A属于特征值1有r个线性无关特征向量,记为η1,η2,…,ηr. 当λ=0时,因为R(A)=r,从而齐次线性方程组(0·E—A)x=0的基础解系含n一r个解向量. 因此,A属于特征值0有n—r个线性无关的特征向量,记为ηr+1,ηr+2,…,ηn. 于是η1,η2,…,ηn是A的n个线性无关的特征向量,所以A可对角化,并且对角阵为 [*]

解析 只需证明A有n个线性无关的特征向量,即可说明A可相似对角化,而对角阵主对角线上的元素即为A的特征值.
转载请注明原文地址:https://kaotiyun.com/show/kKN4777K
0

最新回复(0)