设函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,求证: (1)存在ξ∈(a,b),使f(ξ)+ξf’(ξ)=0; (2)存在η∈(a,b),使ηf(η)+f’(η)=0.

admin2015-08-14  36

问题 设函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,求证:
    (1)存在ξ∈(a,b),使f(ξ)+ξf’(ξ)=0;
    (2)存在η∈(a,b),使ηf(η)+f’(η)=0.

选项

答案(1)设φ(x)=xf(x),则φ(x)在[a,b]上连续,在(a,b)内可导,且φ(a)=φ(b)=0,由罗尔定理得,存在ξ∈(a,b),使φ’(ξ)=0,即f(ξ)+ξf’(ξ)=0. (2)设F(x)=[*]则F(x)在[a,b]上连续,在(a,b)内可导,且F(a)=F(b)=0,由罗尔定理得,存在η∈(a,b),使[*].即ηf(η)+f’(η)=0.

解析
转载请注明原文地址:https://kaotiyun.com/show/kM34777K
0

最新回复(0)