首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知f(x)在[0,1]上二阶可导,且f(0)=f(1)=0,f’(0)=0,证明:在区间(0,1)内至少有一点ξ,使f”(ξ)-f(ξ)=0.
已知f(x)在[0,1]上二阶可导,且f(0)=f(1)=0,f’(0)=0,证明:在区间(0,1)内至少有一点ξ,使f”(ξ)-f(ξ)=0.
admin
2022-06-04
63
问题
已知f(x)在[0,1]上二阶可导,且f(0)=f(1)=0,f’(0)=0,证明:在区间(0,1)内至少有一点ξ,使f”(ξ)-f(ξ)=0.
选项
答案
令G(x)=f(x)e
-x
,则G(x)在[0,1]上连续,在(0,1)内可导,且G(0)=G(1)=0.根据罗尔定理得,至少存在一点η∈(0,1),使得G’(η)=0,即 [f’(η)-f(η)]e
-η
=0 故有f’(η)-f(η)=0. 令F(x)=[f’(x)-f(x)]e
x
,因为f(x)在[0,1]上连续,在(0,1)内可导,所以F(x)在[0,7]上连续,在(0,η)内可导,且F(0)=F(η)=0.由罗尔定理知,至少存在一点ξ∈(0,1),使得F’(ξ)=0. 由F’(x)=[f”(x)-f(x)]e
x
得,F’(ξ)=[f”(ξ)-f(ξ)]e
ξ
,故在区间(0,1)内至少有一点ξ,使得f”(ξ)-f(ξ)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/zWR4777K
0
考研数学三
相关试题推荐
求幂级数的收敛域及和函数.
设函数,则f(x)有().
设ɑ1,ɑ2,ɑ3,ɑ4为4维列向量,满足ɑ2,ɑ3,ɑ4线性无关,且ɑ1+ɑ3=2ɑ2.令A=(ɑ1,ɑ2,ɑ3,ɑ4),β=ɑ1+ɑ2+ɑ3+ɑ4求线性方程组Ax=β的通解.
求|z|在约束条件下的最大值与最小值.
设α1,α2,α3,α4是四维非零列向量,A=(α1,α2,α3,α4),A*为A的伴随矩阵,又知方程组Ax=0的基础解系为(1,0,2,0)T,则方程组A*x=0基础解系为().
设n维非零列向量α,β正交且A=αβT.证明:A不可以相似对角化.
设向量组α1,α2,…,αs为齐次线性方程组AX=0的一个基础解系,Aβ≠0.证明:齐次线性方程组BY=0只有零解,其中B=(β,β+α1,…,β+αs).
设f(x)=,求f(x)及其间断点,并判断其类型.
随机试题
男性,42岁,消化道溃疡病史1年,近期反复出现腹痛,1d前出现呕吐,呕吐物为大量隔宿食物,该患者可能是
足月顺产男婴,生后26天,发热,吃奶少,大便稍稀1天来诊,其母患感冒2天。体检:精神差,呼吸略促,咽赤不明显,皮肤轻度黄染,心肺听诊无异常,脐轮略红肿,脐部有少许分泌物,肝肋下3.5cm,前囟平,颈软。血白细胞4.2×109/L,中性粒细胞74%,大便镜检
通常中档CT机的空间分辨率是
A.GLPB.GAPC.GIPD.GCP对中药材生产的全过程进行规范化的质量管理的是()
对于大面积且不便于人工量测的众多建筑裂缝宜采用()。
某上市公司发行普通股1000万股,每股面值1元,每股发行价格5元,支付手续费20万元,支付咨询费60万元。该公司发行普通股计入股本的金额为()万元。
下列关于营业税改征增值税政策的相关表述,正确的是()。
人民法院受理了甲公司破产清算的申请,指定乙律师事务所为管理人,下列属于共益债务的有()。
A.条件(1)充分,但条件(2)不充分。B.条件(2)充分,但条件(1)不充分。C.条件(1)和条件(2)单独都不充分,但条件(1)和条件(2)联合起来充分。D.条件(1)充分,条件(2)也充分。E.条件(1)和条件(2)单独都不充分,条件(1)和
设f(x)是奇函数,且对一切x有f(x+2)=f(x)+f(2),又f(1)=a,a为常数,n为整数,则f(n)=____________.
最新回复
(
0
)