首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2002年] 设f(x)在(一∞,+∞)上有一阶连续导数,L是上半平面(y>0)内的有向分段光滑曲线,其起点为(a,b),终点为(c,d).记 证明曲线积分I与路径无关;
[2002年] 设f(x)在(一∞,+∞)上有一阶连续导数,L是上半平面(y>0)内的有向分段光滑曲线,其起点为(a,b),终点为(c,d).记 证明曲线积分I与路径无关;
admin
2019-04-08
97
问题
[2002年] 设f(x)在(一∞,+∞)上有一阶连续导数,L是上半平面(y>0)内的有向分段光滑曲线,其起点为(a,b),终点为(c,d).记
证明曲线积分I与路径无关;
选项
答案
所给区域为上半平面,是单连通区域.只需验证[*]是否成立,其中 P=[1+y
2
f(xy)]/y, Q=x[y
2
f(xy)一1]/y
2
. 因 [*] 故在上半平面(y>0)内有[*].因而在上半平面(y>0)内曲线积分I与路径无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/hJ04777K
0
考研数学一
相关试题推荐
(2002年)设函数f(x)在x=0的某邻域内具有一阶连续导数,且f(0)≠0,f′(0)≠0,若af(h)+bf(2h)一f(0)在h→0时是比h高阶的无穷小,试确定a,b的值。
(2005年)求幂级数的收敛区间与和函数f(x)。
(2008年)f(x)=1一x2(0≤x≤π)展开成(以2π为周期的)余弦级数,并求级数的和。
(2005年)已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1。证明:(I)存在ξ∈(0,1),使得f(ξ)=1一ξ;(Ⅱ)存在两个不同的点η,ζ∈(0,1),使得f′(η)f′(ζ)=1。
(2015年)已知函数f(x,y)=x+y+xy,曲线C:x2+y2+xy=3,求f(x,y)在曲线C上的最大方向导数。
设A,B,C均为n阶矩阵,若AB=C,且B可逆,则()
设A为m阶实对称矩阵且正定,B为m×n实矩阵,BT为B的转置矩阵,试证:BTAB为正定矩阵的充分必要条件是B的秩r(B)=n。
设直线L:求该旋转曲面界于z=0与z=1之间的几何体的体积.
(2018年)设F(x,y,z)=xyi一yzj+zxk,则rotF(1,1,0)=________________.
[2012年]设A为三阶矩阵,P为三阶可逆矩阵,且P-1AP=.若P=[α1,α2,α3],Q=[α1+α2,α2,α3],则Q-1AQ=().[img][/img]
随机试题
申请发明和实用新型专利提交的文件中,具体说明专利保护的范围的书面文件是()
目前基因治疗的基础研究内容是:
在土的总应力的应力路径图中,应力路径的箭头与纵坐标的夹角应为下列()项。
某上市公司本年度的净收益为20000元,每股支付股利2元。预计该公司未来三年进入成长期,净收益第1年增长14%,第2年增长14%,第3年增长8%。第4年及以后将保持其净收益水平。该公司一直采用固定支付率的股利政策,并打算今后继续实行该政策。该公司没有增发普
房地产部门规章包括()等。
现有失去标签的氯化钙、硝酸银、盐酸、碳酸钠4种无色溶液。将它们编号为甲、乙、丙、丁后,两两混合的现象如表1所示。根据实验现象判断甲溶液中溶质的化学式是()。
当社会总供给小于社会总需求时,可供选择的财政政策工具包括()。
马克思对人类思想最大的贡献是
PeopleofBurlingtonarebeingdisturbedbythesoundofbells.FourstudentsfromBurlingtonCollegeofHigherEducationarein
EachUSDAbeefgradeisameasureofadistinctlevelofquality.Becausebeefcanvarysomuchin【S1】______,ittakeseightg
最新回复
(
0
)