首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,α3是AX=0的基础解系,则该方程组的基础解系还可表示成( ).
设α1,α2,α3是AX=0的基础解系,则该方程组的基础解系还可表示成( ).
admin
2019-08-12
34
问题
设α
1
,α
2
,α
3
是AX=0的基础解系,则该方程组的基础解系还可表示成( ).
选项
A、α
1
,α
2
,α
3
的一个等价向量组
B、α
1
,α
2
,α
3
的一个等秩向量组
C、α
1
,α
1
+α
2
,α
1
+α
2
+α
3
D、α
1
-α
2
,α
2
-α
3
,α
3
-α
1
答案
A
解析
选项B显然不对,因为与α
1
,α
2
,α
3
等秩的向量组不一定是方程组的解;
因为α
1
(α
1
+α
2
)-(α
1
+α
2
+α
3
)=0,所以α
1
,α
1
+α
2
,α
1
+α
2
+α
3
线性相关,不选C;
由(α
1
-α
2
)+(α
2
-α
3
)+(α
3
-α
1
)=0,所以α
1
-α
2
,α
2
-α
3
,α
3
-α
1
线性相关,不选D,
故应选A.
转载请注明原文地址:https://kaotiyun.com/show/keN4777K
0
考研数学二
相关试题推荐
[*]
设有齐次线性方程组试问a为何值时,该方程组有非零解,并求出其通解.
An×n(α1,α2,…,αn),Bn×n=(α1+α2,α2+α3,…,αn+α1),当r(A)=n时,方程组BX=0是否有非零解?
已知f(x)=,求f’(1).
设向量组α1,α2,…,αn-1为n维线性无关的列向量组,且与非零向量β1,β2正交.证明:β1,β2线性相关.
设有向量组(Ⅰ):α1=(1+a,1,1,1)T,α2=(2,2+a,2,2)T,α3=(3,3,3+a,3)T,α4=(4,4,4,4+a)T.问a取何值时,(Ⅰ)线性相关?当(Ⅰ)线性相关时,求其一个极大无关组,并将其余向量用该极大无关组线性表出.
设3阶矩阵A可逆,且A-1=A*为A的伴随矩阵,求(A*)-1.
已知4×5矩阵A=(α1,α2,α3,α4,α5),其中α1,α2,α3,α4,α5均为四维列向量,α1,α2,α4线性无关,又设α3=α1一α4,α5=α1+α2+α4,β=2α1+α2一α3+α4+α5,求Ax=β的通解。
已知线性方程组(I)及线性方程组(Ⅱ)的基础解系ξ1=[一3,7,2,0]T,ξ2=[一1,一2,0,1]T.求方程组(Ⅰ)和(Ⅱ)的公共解.
随机试题
抗磷脂抗体综合征临床上可表现为
A.磨光面B.颊面C.咬合面D.组织面E.抛光面与水平力量有关,使义齿保持稳定的表面是
A.归肾丸B.人参养荣汤C.加减一阴煎D.血府逐瘀汤E.苍附导痰丸
甲请A搬家公司搬家,A公司派出BCD三人前往。在搬家过程中,B发现甲的掌上电脑遗落在一角,便偷偷藏人自己腰包;C与D在搬运甲最珍贵的一盆兰花时不慎将其折断,为此甲与CD二人争吵起来,争吵之时不知是谁又将甲阳台上的另一盆鲜花碰下,砸伤路人E。BCD见事已至此
某企业由一位总经理和两位副总经理组成的领导班子,工作有魄力,开拓创新意识强,经常超负荷工作,该企业产品在市场有一定的竞争能力,企业经济效益也不错,但近一段时期来,随着业务量增大,企业经营状况有所下降。为改变这种状况,总经理召集20多个部门的负责人及全体领导
一般酒中的酒精成分高于()度以上者称为高度酒。
秦王向韩非子询问治国理政的办法,韩非子的回答是“明主之国,无书简之文,以法为教;无先王之语,以吏为师;无私剑之捍,以斩首为勇”。下列选项中因韩非子的建议导致的结果描述正确的是()。
Professional______referstocoverageofrisksraisedbyprofessionaladvisoryandserviceprovidersiftheygiveclientsinsuffi
把目标程序中的逻辑地址转换成主存空间的物理地址称为( )。
WhatisCanonDigitalPowerShots230camera’ssize?______
最新回复
(
0
)