首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,λ是A的特征值,其对应的特征向量为X,证明:λ2是A2的特征值,X为特征向量.若A2有特征值λ,其对应的特征向量为X,X是否一定为A的特征向量?说明理由.
设A是n阶矩阵,λ是A的特征值,其对应的特征向量为X,证明:λ2是A2的特征值,X为特征向量.若A2有特征值λ,其对应的特征向量为X,X是否一定为A的特征向量?说明理由.
admin
2018-04-18
49
问题
设A是n阶矩阵,λ是A的特征值,其对应的特征向量为X,证明:λ
2
是A
2
的特征值,X为特征向量.若A
2
有特征值λ,其对应的特征向量为X,X是否一定为A的特征向量?说明理由.
选项
答案
由AX=λX得A
2
X=A(AX)=A(λX)=λAX=λ
2
X可知λ
2
是A
2
的特征值,X为特征向量.若A
2
X=λX,其中A=[*],A
2
=O,A
2
的特征值为λ=0,取X=[*],显然A
2
X=0X,但AX=[*]≠0X,即X不是A的特征向量,因此结论未必成立.
解析
转载请注明原文地址:https://kaotiyun.com/show/kjk4777K
0
考研数学二
相关试题推荐
设A为3阶矩阵,α1,α2为A的分别属于特征值-1、1的特征向量,向量α3满足Aα3=α2+α3,(I)证明α1,α2,α3线性无关;(Ⅱ)令P=(α1,α2,α3),求P-1AP.
微分方程y"-4y=e2x的通解为________.
已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1.证明:存在两个不同的点η,ξ∈(0,1),使得f’(η)f’(ξ)=1.
曲线y=lnx上与直线x+y=1垂直的切线方程为________.
证明函数y=x-ln(1+x2)单调增加.
设A=(aij)是3阶非零矩阵,|A|为A的行列式,Aij为aij的代数余子式.若aij+Aij=0(i,j=1,2,3),则|A|=__________.
(2012试题,三)(1)证明方程xn+xn-1+…+x=1(n为大于1的整数),在区间内有且仅有一个实根;(2)记(1)中的实根为xn,证明存在,并求此极限.
(2011年试题,一)设则I,J,K的大小关系是().
(1999年试题,十)设f(x)是区间[0,+∞)上单调减少且非负的连续函数,证明数列{an}的极限存在.
求微分方程y"(zx+y’2)=y’满足初始条件y(1)=y’(1)=1的特解.
随机试题
石决明、珍珠母功效的共同点有
某男,54岁,2小时前因家事不和突然出现心前区疼痛,为隐痛呈阵发性,现已发作3次,每次持续数分钟。伴脘腹胀闷,嗳气则舒。诊见,时时叹息,苔薄白,脉细弦。若病人心烦易怒,口干便秘,舌红苔黄,脉弦数,则应
问卷问题设计的好坏,关系到能否收集到准确可靠的调查数据。问卷的问题设计一般应符合哪些要求
关于工程网络计划的优化,以下说法正确的是()。
11月5日,A公司签发一张金额栏为空白的转账支票,向乙商店购买一批货物,鉴于A公司当时在开户银行的账户上只有2万元的存款,因此A公司出票时另行记载付款日期为11月25日。当日乙商店补记上确切的金额为6万元。11月8日,乙商店与丙公司在买卖合同中将该转账支票
次数分布数列各组频率之和应( )。
下列统计指标不能用来衡量证券投资的风险的是()。
群体决策的缺点包括()。
下列连线错误的是()。
李娜说,作为一个科学家,她知道没有一个科学家喜欢朦胧诗,而绝大多数科学家都擅长逻辑思维。因此,至少有些喜欢朦胧诗的人不擅长逻辑思维。以下哪项是对李娜的推理的最恰当评价?
最新回复
(
0
)