首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A,B为满足AB=O的任意两个非零矩阵,则必有( )
设A,B为满足AB=O的任意两个非零矩阵,则必有( )
admin
2018-04-08
21
问题
设A,B为满足AB=O的任意两个非零矩阵,则必有( )
选项
A、A的列向量组线性相关,B的行向量组线性相关
B、A的列向量组线性相关,B的列向量组线性相关
C、A的行向量组线性相关,B的行向量组线性相关
D、A的行向量组线性相关,B的列向量组线性相关
答案
A
解析
设A为m×n矩阵,B为n×s矩阵,则由AB=O知,r(A)+r(B)≤n。又A,B为非零矩阵,故0<r(A)<n,0<r(B)<n,即A的列向量组线性相关,B的行向量组线性相关。故应选A。
转载请注明原文地址:https://kaotiyun.com/show/klr4777K
0
考研数学一
相关试题推荐
已知α1=[1,2,一3,1]T,α2=[5,一5,a,11]T,α3=[1,一3,6,3]T,α4=[2,一1,3,a]T.问:a为何值时,向量组α1,α2,α3,α4线性无关;
已知二次型f(x1,x2,x3)=2x12+x22+x32+2tx1x2+tx2x3是正定的,则t的取值范围是____________.
设A为n阶非奇异矩阵,α为n维列向量,b为常数.记分块矩阵其中A*是矩阵A的伴随矩阵,E为n阶单位矩阵.证明:矩阵Q可逆的充分必要条件是αTA一α≠b.
设矩阵,矩阵X满足AX+E=A2+X,其中E为3阶单位矩阵.求矩阵X
已知向量组与向量组等秩,则x=___________.
设A为n阶矩阵,λ1和λ2是A的两个不同的特征值x1,x2是分别属于λ1和λ2的特征向量.证明:x1+x2不是A的特征向量.
计算下列n阶行列式:
设有行列式已知1703,3159,975,10959都能被13整除,不计算行列式D,证明D能被13整除.
设Y服从(0,3)上的均匀分布,X与Y相互独立,则行列式的概率为________.
随机试题
MaryAnning(1799—1847)wasaBritishfossilhunterwhobeganfinding【21】asachild,andsoonsupportedherselfandhervery【22】
中医治疗营养不良气血亏虚(干疳)的治法是
房地产估价中,比较法适用的对象是()房地产。
地下工程钢筋混凝土自防水墙体的水平施工缝设置位置,下列哪一项是错误的?[1999年第068题]
Ⅱ类建设项目评价其导致的环境水文地质问题时,可采用预测水位与现状调查水位相比较的方法进行评价过程中,地下水位降落漏斗时,对水位不能恢复、持续下降的疏干漏斗,采用()进行评价。
用以指导各项建筑和工程设施的设计和施工的是()阶段的规划。
会计档案的保管期限应当从()算起。
人体有多少个器官?这取决于你问谁。当多个类型的组织联合起来发挥功能时,这个单位就是一个器官。每个器官都为人类的表现或生存发挥各自功能,但并非每个器官都是生存所必需的。只有5个器官——脑、心、肝、至少一个肾和至少一个肺才是生存绝对必要的。这些重要器官中任何一
设f(χ)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,证明:存在ξ∈(a,b),使得f′(ξ)+2f(ξ)=0.
Thehumanbodyisaremarkablefoodprocessor.Asanadult,youmayconsume【B1】______atonoffoodperyearandstillnotgaino
最新回复
(
0
)