首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设以元线性方程组Ax=b,其中 (I)证明行列式|A|=(n+1)an; (Ⅱ)当a为何值时,该方程组有唯一的解,并在此时求x1; (Ⅲ)当a为何值时,该方程组有无穷多解,并在此时求其通解.
设以元线性方程组Ax=b,其中 (I)证明行列式|A|=(n+1)an; (Ⅱ)当a为何值时,该方程组有唯一的解,并在此时求x1; (Ⅲ)当a为何值时,该方程组有无穷多解,并在此时求其通解.
admin
2016-04-11
60
问题
设以元线性方程组Ax=b,其中
(I)证明行列式|A|=(n+1)a
n
;
(Ⅱ)当a为何值时,该方程组有唯一的解,并在此时求x
1
;
(Ⅲ)当a为何值时,该方程组有无穷多解,并在此时求其通解.
选项
答案
(I) 记D
n
=|A|,以下用数学归纳法证明D
n
=(n+1)a
n
. 当n=1时,D
1
=2a,结论成立;当n=2时, D
2
=[*]=3a
2
=(n+1)a
n
结论成立;假设结论对于小于n的情况成立.将D
n
按第1行展开,得 D D
n
=2aD D
n—1
— [*] =2aD
n—1
一a
2
D
n—2
(代入归纳假设D
k
=(k+1)a
k
,k<n) =2ana
n—1
一a
2
(n一1)a
n—2
=(n+1)a
n
故|A|=(n+1)a
n
. (Ⅱ)该方程组有唯一解[*]|A|≠0,即a≠0.此时,由克莱姆法则,将D
n
第1列换成b,得行列式 [*] (Ⅲ)当a=0时,方程组为 [*] 此时方程组系数矩阵的秩和增广矩阵的秩均为n一1,所以此时方程组有无穷多解,其通解为 x=(0,1,0,…,0)
T
+k(1,0,0,…,0)
T
其中k为任意常数.
解析
本题综合考查高阶行列式的计算、线性方程组解的判定及其求解方法.注意当a=0时,方程组为:x
2
=1,x
3
=0,…,x
n
=0,由于系数矩阵右上角的n一1阶子式非零,故选取x
2
,…,x
n
为约束未知量,而x
1
为自由未知量,令x
1
=0,便得Ax=b的一个特解为η=(0,1,0,…,0)
T
,在对应齐次方程组Ax=0中,令自由未知量x
1
=1,便得Ax=0的基础解系为ξ=(1,0,0,…,0)
T
,于是由解的结构定理便得Ax=b的通解为x=η+kξ.
转载请注明原文地址:https://kaotiyun.com/show/eyw4777K
0
考研数学一
相关试题推荐
设α1,α2,…,αn是方程组Ax=0的基础解系,k1,k2,…,kn为任意常数,则方程组Ax=0的通解为()
设则f(x)第一类间断点的个数为()
[*]
设函数f(x)在(—∞,+∞)上连续,且分别在(—∞,0)与(0,+∞)上二次可导,其导函数f’(x)的图像如图(1)所示,则f(x)在(—∞,+∞)有
已知三阶方阵A,B满足关系式E+B=AB,的三个特征值分别为3,-3,0,则|B-1+2E|=_______.
曲线y=(x+2)渐近线的条数为()
设函数y=y(x)满足x=dt,x≥0若y=y(x),y=0及x=1所围图形为D,求D绕Y轴旋转一周所得旋转体的体积V
设线性无关的函数y1,y2,y3都是非齐次线性微分方程y’’+p(x)y’+q(x)y=f(x)的解,C1,C2为任意常数,则该方程的通解为()
一根长度为1的细棒位于x轴的区间[0,1]上,若其线密度ρ(x)=-x2+2x+1,则该细棒的质心横坐标=________.
随机试题
A.银翘散B.桑菊饮C.透疹凉解汤D.清胃解毒汤E.清解透表汤治疗风疹邪郁肺卫证,应首选
患者男性,28岁,肛门坠胀疼痛2个月,症状时轻时重,大便干,排便前有粘液自肛门流出,无便血。此患者最可能的诊断是
落枕穴位于手背,第二、三掌骨间的
麻黄蜜炙后可增强()。
公证机关进行公证的依据是当事人的申请,这是( )的具体体现。
以下所列,不能填写在《出境货物报检单》“发货人”一栏的是( )。
客户主动要求了解或购买有关与衍生交易相关的投资产品时,商业银行应()。
我国现行税法规定,税务机关采取税收保全措施的期限一般不得超过6个月,重大案件需要延长的,应当报国家税务总局批准。()
《中华人民共和国土地改革法》规定的土地改革的根本目的是()。
[*]
最新回复
(
0
)