首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数y=y(x)在[0,+∞)上有连续导数,且y(0)=1,y’(x)≥0,y=y(x)与y=0,x=0,x=t(t>0)所围图形为D,D绕x轴旋转一周所得旋转体的侧面积为S(t),体积为V(t),且S(t)=2V(t) 求y=y(x);
设函数y=y(x)在[0,+∞)上有连续导数,且y(0)=1,y’(x)≥0,y=y(x)与y=0,x=0,x=t(t>0)所围图形为D,D绕x轴旋转一周所得旋转体的侧面积为S(t),体积为V(t),且S(t)=2V(t) 求y=y(x);
admin
2022-06-09
64
问题
设函数y=y(x)在[0,+∞)上有连续导数,且y(0)=1,y’(x)≥0,y=y(x)与y=0,x=0,x=t(t>0)所围图形为D,D绕x轴旋转一周所得旋转体的侧面积为S(t),体积为V(t),且S(t)=2V(t)
求y=y(x);
选项
答案
由已知,S(t)=2V(t),有 2π∫
0
t
y[*]dx=2·π∫
0
t
y
2
dx 两边同时关于t求导,得[*]=y,即 y’(t)=[*] 为可分离变量方程 [*]=dt 积分,得 ln(y+[*])=t+C 由y(0)=1,得C=0.故ln(y+[*])=t,即 y+[*]=e
2
① 又由 1n(y-[*])=-ln(y+[*])=-t, 可知 y-[*]=e
-t
② 由式①和式②,解得y=e
t
+e
-t
/2,故y(x)=y=e
x
+e
-x
/2
解析
转载请注明原文地址:https://kaotiyun.com/show/knf4777K
0
考研数学二
相关试题推荐
设f(χ,y)在点(0,0)的某邻域内连续,且满足=-3,则函数f(χ,y)在点(0,0)处().
设z=f(x,y)在点(x0,y0)处可微,△z是f(x,y)在点(x0,y0)处的全增量,则在点(x0,y0)处()
设A、B是两个随机事件,且P(C|AB)=1,则正确的是()
二次型xTAx正定的充要条件是
设f(x)有一阶连续导数,f(0)=0,当x→0时,∫0ff(x)f(t)dt与x2为等价无穷小,则f’(0)等于
函数f(x)=|4x3一18x2+27|在区间[0,2]上的最小值为__________,最大值为___________。
设函数f(x)和g(x)在区间[a,b]上连续,在区间(a,b)内可导,且f(a)=g(b)=0,,试证明存在ξ∈(a,b)使.
设f(χ),g(χ)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,证明:存在ξ∈(a,b),使得f′(ξ)+f(ξ)g′(ξ)=0.
设X1,X2分别为A的属于不同特征值λ1,λ2的特征向量.证明:X1+X2不是A的特征向量.
随机试题
“癌前病变”最确切的概念是
A、海马B、淫羊藿C、鹿茸D、补骨脂E、肉苁蓉能补肾阳、温脾止泻
某工程项目,建设单位与施工单位按照《建设工程施工合同(示范文本)》签订了施工合同。合同工期为9个月,合同总价为840万元。工程师批准的施工进度计划如图5-1所示(时间单位:月),各项工作均按照最早时间安排且匀速施工,施工单位的部分报价如表5-3所示。施工合
背景资料:某施工双代号网络进度计划如下图所示,其中A、B、D工作使用同一种施工机械,开工前有一台施工机械出现故障,导致可使用的该机械只有一台,根据现场施工条件,工作顺序调整为B、A、D,设备租赁费2000元/天。问题:
综合管廊应统一(),并应满足管线的使用和运营维护要求。
质量控制是消除偶发性问题,使产品质量()在规定水平。
某盒灯泡中有3只次品和6只正品(每只均可区分),测试员每次取出一只进行测试,直到3只次品全部测出为止。假如第三只次品在第六次测试时被发现,那么不同的测试情况共有多少种?()
习近平总书记在2022年春季学期中央党校(国家行政学院)中青年干部培训班开班式上发表重要讲话。下列对其重要讲话内容的说法,错误的是()。
What’stheweatherlikenow?
ArtistGeorgeSheffieldwasrecentlyfeaturedinadaringpostmodernart______attheWilkesMuseum.
最新回复
(
0
)