首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数y=y(x)在[0,+∞)上有连续导数,且y(0)=1,y’(x)≥0,y=y(x)与y=0,x=0,x=t(t>0)所围图形为D,D绕x轴旋转一周所得旋转体的侧面积为S(t),体积为V(t),且S(t)=2V(t) 求y=y(x);
设函数y=y(x)在[0,+∞)上有连续导数,且y(0)=1,y’(x)≥0,y=y(x)与y=0,x=0,x=t(t>0)所围图形为D,D绕x轴旋转一周所得旋转体的侧面积为S(t),体积为V(t),且S(t)=2V(t) 求y=y(x);
admin
2022-06-09
74
问题
设函数y=y(x)在[0,+∞)上有连续导数,且y(0)=1,y’(x)≥0,y=y(x)与y=0,x=0,x=t(t>0)所围图形为D,D绕x轴旋转一周所得旋转体的侧面积为S(t),体积为V(t),且S(t)=2V(t)
求y=y(x);
选项
答案
由已知,S(t)=2V(t),有 2π∫
0
t
y[*]dx=2·π∫
0
t
y
2
dx 两边同时关于t求导,得[*]=y,即 y’(t)=[*] 为可分离变量方程 [*]=dt 积分,得 ln(y+[*])=t+C 由y(0)=1,得C=0.故ln(y+[*])=t,即 y+[*]=e
2
① 又由 1n(y-[*])=-ln(y+[*])=-t, 可知 y-[*]=e
-t
② 由式①和式②,解得y=e
t
+e
-t
/2,故y(x)=y=e
x
+e
-x
/2
解析
转载请注明原文地址:https://kaotiyun.com/show/knf4777K
0
考研数学二
相关试题推荐
n阶实对称矩阵A正定的充分必要条件是()
下列关于向量组线性相关性的说法正确的个数为()①若α1,α2……αn线性相关,则存在全不为零的常数k1,k2,…,kn,使得k1α1,+knα2+…+knαn=0。②如果α1,α2……αn线性无关,则对任意不全为零的常数k1,k2,…,kn,都
设z=f(x,y)在点(x0,y0)处可微,△z是f(x,y)在点(x0,y0)处的全增量,则在点(x0,y0)处()
设f(x)可导,F(x)=f(x)(1+|sinx|),则f(0)=0是F(x)在x=0处可导的().
设φ1(x),φ2(x)为一阶非齐次线性微分方程y’+P(x)y=Q(x)的两个线性无关的特解,则该方程的通解为().
设有方程组AX=0与BX=0,其中A,B都是m×n阶矩阵,下列四个命题:(1)若AX=0的解都是BX=0的解,则r(A)≥r(B)(2)若r(A)≥r(B),则AX=0的解都是BX=0的解(3)若AX=0与BX=0同解,则r(A)=r(B
设函数f(x)在|x|<δ内有定义且|f(x)|≤x3,则f(x)在x=0处().
随机地向半圆0<y<(a>0)内掷一点,点落在半圆内任何区域的概率与区域的面积成正比,则原点与该点的连线与x轴夹角小于的概率为__________.
求极限=_______.
设η1,η2,η3为3个n维向量,已知n元齐次方程组AX=0的每个解都可以用η1,η2,η3线性表示,并且r(A)=n-3,证明η1,η2,η3为AX=0的一个基础解系.
随机试题
韦伯认为,在传统型统治的行政组织中,官吏们的行政管理或者技术才能并不重要,被认为高于一切的“第一要素”是他们()
真核生物肽链合成起始的特点,错误的是
戴用平面导板矫治器前牙咬在导板上时后牙离开5~6mm
男性患者,52岁,矮胖,查体肺下界在锁骨中线,腋前线,肩胛下角线分别为第5、7、9肋间隙,左右肺下界大致相同,最可能的原因是
每桶0.1%苯扎溴铵溶液泡手时,限泡入次为
下列哪项不是急性胰腺炎的病因
逻辑式F=A+B+c可变换为()。
某公司生产单一产品,实行标准成本管理。每件产品的标准工时为3小时,固定制造费用的标准成本为6元,企业生产能力为每月生产产品400件。7月份公司实际生产产品350件,发生固定制造成本2250元,实际工时为1100小时。根据上述数据计算,7月份公司固定制造
甲借款给乙1万元,乙与丙之间签订了一保证合同,此后乙与甲协商变更借款数额为1.5万元。合同到期时,乙无力偿还该借款。对此,下列说法不正确的有()。
下列关于国内信用证办理和使用要求的表述中,符合支付结算法律制度规定的是()。
最新回复
(
0
)