首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2015年)(I)设函数u(x),v(x)可导,利用导数定义证明 [u(x)v(x)]′=u′(x)v(x)+u(x)v′(x); (Ⅱ)设函数u1(x),u2(x),…,un(x)可导,f(x)=u1(x)u2(x)…un(x),写出f
(2015年)(I)设函数u(x),v(x)可导,利用导数定义证明 [u(x)v(x)]′=u′(x)v(x)+u(x)v′(x); (Ⅱ)设函数u1(x),u2(x),…,un(x)可导,f(x)=u1(x)u2(x)…un(x),写出f
admin
2018-03-11
74
问题
(2015年)(I)设函数u(x),v(x)可导,利用导数定义证明
[u(x)v(x)]′=u′(x)v(x)+u(x)v′(x);
(Ⅱ)设函数u
1
(x),u
2
(x),…,u
n
(x)可导,f(x)=u
1
(x)u
2
(x)…u
n
(x),写出f(x)的求导公式。
选项
答案
(I)根据导数的定义有 [*] 由于u(x),v(x)可导,则 [*] 又因为函数可导必连续,故有[*]综上所述 [u(x)v(z)]′=u′(x)v(x)+u(x)v′(x)。 (Ⅱ)由(I)的结论得 f′(x)=[u
1
(x)u
2
(x)…u
n
(x)]′ =u′
1
(x)u
2
(x)…u
n
(x)+u
1
(x)u′
2
(x)…u
n
(x)+…+u
1
(x)u
2
(x)…u′
n
(x)。
解析
转载请注明原文地址:https://kaotiyun.com/show/kvr4777K
0
考研数学一
相关试题推荐
求二阶常系数线性微分方程y’’+λy’=2x+1的通解,其中λ为常数.
若将在[0,2]上展开成正弦级数,则该级数的和函数S(x)为________.
设随机变量X的分布函数为F(x),密度函数为f(x)=af1(x)+bf2(x),其中f2(x)是正态分布N(0,σ2)的密度函数,f2(x)是参数为λ的指数分布的密度函数,已知,则()
设随机变量X和Y均服从,且D(X+Y)=1,则X与Y的相关系数ρ=___________.
设A是3×3矩阵,α1,α2,α3是三维列向量,且线性无关,已知Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2.求|A|.
A是n阶矩阵,则A相似于对角阵的充分必要条件是()
(2010年)
(2014年)设函数f(u)具有二阶连续导数,z=f(excosy)满足=(4z+excosy)e2x。若f(0)=0,f′(0)=0,求f(u)的表达式。
(2016年)已知函数f(x)可导,且f(0)=1,设数列{xn}满足xn+1=f(xn)(n=1,2,…),证明:(I)级数绝对收敛;(Ⅱ)存在,且
(2017年)设薄片型物体S是圆锥面被柱面z2=2x割下的有限部分,其上任一点的密度为记圆锥面与柱面的交线为C.求S的质量M.
随机试题
下列关于法与人权的说法中,哪些选项是正确的?()
已经登记注册的机动车有________________变动,不必到车管所办理相应的登记手续。
消除系统误差的方法为( )。
市场经济的局限性表现在()。
任何一个统计问题的最基本要素是()。
党务工作的指导思想是什么?
马克思主义群众观点的主要内容包括()。
1803年,美国联邦最高法院在审理()一案,开创了由最高司法机构审查国会制定的法律是否符合宪法的先例。
I’mtryingtousethe______FrenchIhavejustlearnt.
A、Assembling.B、Marketing.C、Electriccars.D、PublicAdministration.C
最新回复
(
0
)