首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2016年)已知函数f(x)可导,且f(0)=1,设数列{xn}满足xn+1=f(xn)(n=1,2,…),证明: (I)级数绝对收敛; (Ⅱ)存在,且
(2016年)已知函数f(x)可导,且f(0)=1,设数列{xn}满足xn+1=f(xn)(n=1,2,…),证明: (I)级数绝对收敛; (Ⅱ)存在,且
admin
2018-03-11
114
问题
(2016年)已知函数f(x)可导,且f(0)=1,
设数列{x
n
}满足x
n+1
=f(x
n
)(n=1,2,…),证明:
(I)级数
绝对收敛;
(Ⅱ)
存在,且
选项
答案
证明:(I)由Lagrange中值定理可得 |x
n+1
一x
n
|=|f(x
n
)一f(x
n-1
)|=|f′(ξ
n
)||x
n
一x
n-1
|, 其中ξ
n
在x
n
与x
n-1
之间。 由于[*]所以[*]同理可得[*] 注意到级数[*]收敛,所以[*]绝对收敛。 (Ⅱ)由于[*]收敛,所以其部分和数列[*]的极限存在,即[*]存在,从而[*]存在。 设[*]则在等式x
n+1
=f(x
n
)两边取极限可得a=f(a)。 令g(z)=f(x)一x,则 g(0)=1>0,g(2)=f(2)一2<f(0)+[*](2—0)一2=0, 上式中f(2)一f(0)=f′(ξ)(2—0)是由Lagrange中值定理得到的。 由零点定理可知,g(x)在(0,2)上至少存在一个零点。又g′(x)=f′(x)一1<0,即g(x)单调递减,所以g(x)的零点唯一。故[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/Wqr4777K
0
考研数学一
相关试题推荐
设a0,a1……an-1是n个实数,方阵若λ是A的特征值,证明:ξ=[1,λ,λ2,…,λn-1]T是A的对应于特征值λ的特征向量;
设有大小相同、标号分别为1,2,3,4,5的五个球,同时有标号为1,2,…,10的十个空盒.将五个球随机放入这十个空盒中,设每个球放入任何一个盒子的可能性都是一样的,并且每个空盒可以放五个以上的球,计算下列事件的概率:A=“某指定的五个盒子中各有一个球
设A,B是任意两个事件,则=__________.
已知3维向量组α1,α2,α3线性无关,则向量组α1一α2,α2一kα3,α3一α1也线性无关的充要条件是k__________.
设α1,α2,α3均为线性方程组Ax=b的解,下列向量中α1-α2,α1-2α2+α3,(α1一α3),α1+3α2-4α3,是导出组Ax=0的解向量的个数为()
求微分方程的通解.
设有直线则过L1且与L2平行的平面方程为________。
设z=f(xy,yg(x)),其中函数f具有二阶连续偏导数,函数g(x)可导,且在x=1处取得极值g(1)=1,求。
(2001年)设函数f(x,y)在点(0,0)附近有定义,且f′x(0,0)=3,f′y(0,0)=1,则()
[2010年]设随机变量X的概率分布为P(X=k)=c/k!(k=0,1,2,…),则E(X2)=______.
随机试题
已知学生关系:学生(学号、姓名、年龄、住址),若有SQL查询语句:select姓名,年龄from学生where住址=江苏,则该语句对学生关系进行了________操作。
患者,女,18岁。发热1个月,近1周出现面部对称性红斑、手指关节肿痛。化验:血红蛋白90g/L,白细胞3.0×109/L,尿蛋白(+++),抗ds-DNA抗体阳性。应首先考虑的诊断是()
肝在志为
环境保护行政主管部门应在审查小组提出书面审查意见之日起()将专项规划环境影响报告书的审查意见提交专项规划审批机关。
既是证券市场上重要的中介机构,又是证券市场上重要的机构投资者的是()。
为解决由于原材料稀缺导致的国内价格上涨问题,我国某有色金属企业先后在俄罗斯、澳大利亚、智利等国家投资矿石资源项目,增强了企业的竞争力,并使之成为新的利润增长点。该事例说明,我国扩大境外投资()。①必须坚持独立自主的原则②可以将对外开放提升到一
根据下列材料回答问题。2007年9月民航旅客周转量在当年1—9月民航旅客周转量中所占比例约为()。
2005年8月1日,在北京举行的首次中美战略对话的重要意义在于
作为商品的计算机软件,其价值的物质承担者是
Inshoppingmalls,theassistantstrytopushyouintobuying"agifttothankherforherunselfishlove".Whenyoulogontoa
最新回复
(
0
)