首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组α1,α2,…,αt是齐次线性方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解,即AB≠0.试证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
设向量组α1,α2,…,αt是齐次线性方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解,即AB≠0.试证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
admin
2021-11-09
54
问题
设向量组α
1
,α
2
,…,α
t
是齐次线性方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解,即AB≠0.试证明:向量组β,β+α
1
,β+α
2
,…,β+α
t
线性无关.
选项
答案
设有一组数k,k
1
,k
2
,…,k
t
使得 [*] 把(1)式两边左乘以A,有 [*] 因为Aβ≠0,故 [*] 因而,由(1)式,得 [*] 即[*].再由于α
1
,α
2
,…,α
t
是方程组Ax=0的一个基础解系,所以该向量组α
1
,α
2
,…,α
t
线性无关,从而有k
1
=k
2
=…=k
t
=0;再由(2)可知k=0.因此,向量组β,β+α
1
,β+α
2
,…,β+α
t
线性无关.
解析
本题考查向量组线性相关的概念和如何利用线性方程组证明向量组的线性相关性.
转载请注明原文地址:https://kaotiyun.com/show/kvy4777K
0
考研数学二
相关试题推荐
设f(x)在[0,1]上连续可导,且f(0)=0,证明:存在ε∈[0,1],使得f’(ε)=.
设函数y=满足f’(x)=arctan,则=________.
设f(x)为连续函数,且满足=f(x)+xsinx,则f(x)=_______.
设y=y(x)是一向上凸的连续曲线,其上任意一点(x,y)处的曲率为,又此曲线上的点(0,1)处的切线方程为y=x+1,求该曲线方程,并求出函数y(x)的极值。
设A=E-aaT,其中a为n维非零列向量。证明:A2=A的充分必要条件是a为单位向量
求函数f(x,y)=xy--y在由抛物线y=4-x2(x≥0)与两个坐标轴所围成的平面闭区域D上的最大值和最小值。
求函数f(x,y,z)=x+y-z2+5在区域D:x2+y2+z2≤2上的最大值和最小值。
“f(x)在点x=x。处有定义”是当x→x。时f(x)有极限的[],
设α1=(1,0,2,3)T,α2=(1,1,3,5)T,α3=(1,-1,a+2,1)T,α4=(1,2,4,a+8)T,β=(1,1,b+3,5)T.问:(1)a,b为什么数时,β不能用α1,α2,α3,α4表示?(2)a,b为什么
随机试题
下列叙述中正确的是
位于面部,耳屏正中与下颌骨髁状突之间凹陷中的穴位是
常态混凝土浇筑应采取短间歇均匀上升、分层浇筑的方法,基础约束区的浇筑层厚度宜为()m。
设D=计算D。
方程2y"+y’—y=2ex的待定特解形式为__________.
Children,especially,lovefastfoodbecauseit’sfingerfood,nostrugglingwithknivesandforks,noannoyinginstructionsfro
避雷器在验收时,应进行的检查包括()。
()是做人的基本准则,也是职业道德的精髓。
根据以下资料,回答问题。某年度某机构关于中国宠物主人消费行为及倾向调查回收的10680份有效问卷显示:女性养宠者占58.1%,宠物主人为“80—90后”占79.5%。将宠物定义为“孩子”“亲人”“朋友”和“宠物”的分别为54.5%、33.4%、7
设都是来自正态总体N(μ,σ2)的容量为n的两个相互独立的样本均值,试确定n,使得两个样本均值之差的绝对值超过σ的概率大约为0.01.
最新回复
(
0
)