首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组α1,α2,…,αt是齐次线性方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解,即AB≠0.试证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
设向量组α1,α2,…,αt是齐次线性方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解,即AB≠0.试证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
admin
2021-11-09
71
问题
设向量组α
1
,α
2
,…,α
t
是齐次线性方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解,即AB≠0.试证明:向量组β,β+α
1
,β+α
2
,…,β+α
t
线性无关.
选项
答案
设有一组数k,k
1
,k
2
,…,k
t
使得 [*] 把(1)式两边左乘以A,有 [*] 因为Aβ≠0,故 [*] 因而,由(1)式,得 [*] 即[*].再由于α
1
,α
2
,…,α
t
是方程组Ax=0的一个基础解系,所以该向量组α
1
,α
2
,…,α
t
线性无关,从而有k
1
=k
2
=…=k
t
=0;再由(2)可知k=0.因此,向量组β,β+α
1
,β+α
2
,…,β+α
t
线性无关.
解析
本题考查向量组线性相关的概念和如何利用线性方程组证明向量组的线性相关性.
转载请注明原文地址:https://kaotiyun.com/show/kvy4777K
0
考研数学二
相关试题推荐
设f(x),g(x)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b)=0,且g(x)≠0,(x∈[a,b]),g"(x)≠0,(a﹤x﹤b),证明:存在ε∈(a,b),使得.
下列命题成立的是()。
设a>0,x1>0,且定义,证明:存在并求其极值。
设A,B,C,D都是n阶矩阵,r(CA+DB)=n.证明:.
设η为非零向量,,η为方程组AX=0的解,则a=______,方程组的通解为_______.
设A为三阶实对称矩阵,A的每行元素之和为5,AX=0有非零解且λ1=2是A的特征值,对应特征向量为(-1,0,1)T.求A。
设A为四阶实对称矩阵,且A2+2A一3E=O,若r(A—E)=1,则二次型xTAx在正交变换下的标准形为()
设X1,X2,…,Xn相互独立,且Xi(i=1,2,…)服从参数为λ(>0)的泊松分布,则下列选项正确的是()
A、0.B、-∞.C、+∞.D、不存在但也不是∞.D因为et=+∞,et=0,故要分别考察左、右极限.由于因此应选D.
设f(x)在x0处n阶可导,且f(m)(x0)=0(m=1,2,…,n一1),f(n)(x0)≠0(n>2),证明:当n为奇数时,(x,f(x0))为拐点.
随机试题
知一信一行模式中,行为改变的基础是【】
盐度周期性变化明显的生态系统是()
子宫增大不会出现在
正态分布的数值变量资料,描述离散趋势的指标最好选用
Vitali反应可用以鉴别的药物为
孙某投资设立了一家个人独资企业,在下列哪些情况下,该个人独资企业应当解散?
评估中常用的逻辑分析方法主要有()。
在教学中为了实现知识的迁移,教师应该应用(),使学生在学习和思维中将事物的非本质属性从本质属性中剔除,更好地掌握概念问的因果联系。
2014年我国实施“单独两孩”生育政策,出生人口1687万人,比上年增加47万人。2016年实施“全面两孩”生育政策,出生人口1786万人,比上年增加131万人;出生率与“十二五”时期年平均出生率相比,提高了0.84个千分点。201
在采用三级模式结构的数据库系统中,如果对数据库中的表Emp创建聚簇索引,那么改变的是数据库的______。
最新回复
(
0
)