首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组α1,α2,…,αt是齐次线性方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解,即AB≠0.试证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
设向量组α1,α2,…,αt是齐次线性方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解,即AB≠0.试证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
admin
2021-11-09
73
问题
设向量组α
1
,α
2
,…,α
t
是齐次线性方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解,即AB≠0.试证明:向量组β,β+α
1
,β+α
2
,…,β+α
t
线性无关.
选项
答案
设有一组数k,k
1
,k
2
,…,k
t
使得 [*] 把(1)式两边左乘以A,有 [*] 因为Aβ≠0,故 [*] 因而,由(1)式,得 [*] 即[*].再由于α
1
,α
2
,…,α
t
是方程组Ax=0的一个基础解系,所以该向量组α
1
,α
2
,…,α
t
线性无关,从而有k
1
=k
2
=…=k
t
=0;再由(2)可知k=0.因此,向量组β,β+α
1
,β+α
2
,…,β+α
t
线性无关.
解析
本题考查向量组线性相关的概念和如何利用线性方程组证明向量组的线性相关性.
转载请注明原文地址:https://kaotiyun.com/show/kvy4777K
0
考研数学二
相关试题推荐
下列命题正确的是()
设f(x)=a1ln(1+x)+a2ln(1+2x)+.....+anln(1+nx),其中a1,a2,....an为常数,且对一切x有|f(x)|≤|ex-1|.证明:|a1+2a2+....+nan|≤1.
设函数f(x)在(-∞,+∞)内连续,其导数的图形如图所示,则f(x)有()。
设二元函数f(x,y)=|x-y|Φ(x,y),其中Φ(x,y)在点(0,0)处的某邻域内连续,证明:函数f(x,y)在点(0,0)处可微的充分必要条件是Φ(0,0)=0.
设η为非零向量,,η为方程组AX=0的解,则a=______,方程组的通解为_______.
设A是m×n矩阵,B是n×m矩阵,则()。
设n阶矩阵A的伴随矩阵A*≠O,且非齐次线性方程组AX=b有两个不同解η1,η2,则下列命题正确的是()。
二次型f(x1,x2,x3)=(x1+x2)2+(2x1+3x2+x3)2一5(x2+x3)2的规范形为()
设f(x)在x0处n阶可导,且f(m)(x0)=0(m=1,2,…,n一1),f(n)(x0)≠0(n>2),证明:当n为奇数时,(x,f(x0))为拐点.
随机试题
保税仓库:
Thenewsitemabouttheaircrashisfollowedbyadetailedreportmade______.
赵某驾车回家经过一路口,贸然闯红灯,撞上经过此路口的行人孙某,坐在后排座位上的王某见状,对赵某说:“赶紧走,现在没有人看见。”赵某遂加大油门,狂奔5公里。孙某因得不到及时的救助而不幸身亡。赵某因交通肇事罪被依法逮捕,请问,此时王某的行为如何认定?
分散型的统计管理体制特点是()。
下列承受不动产行为中,免征契税的有()。
采购成本是指企业为购进原材料、配套件、外协件而发生的相关费用。()
书口是指书刊的()。
某国每年对全国吸烟情况作调查,结果表明:最近三年来,吸烟的中学生人数在逐年下降。于是,调查组的领导得出结论:吸烟的青少年人数在逐年减少。以下哪项如果为真,则使调查组领导所下结论不能成立?( )
Plasticisthepanaceaoftheages.Nearlyeveryman-madeobject(1)_____(2)_____of,oratleast(3)_____itsverystructure,
扩展名为mpr的文件是()。
最新回复
(
0
)