首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求函数f(x,y)=xy--y在由抛物线y=4-x2(x≥0)与两个坐标轴所围成的平面闭区域D上的最大值和最小值。
求函数f(x,y)=xy--y在由抛物线y=4-x2(x≥0)与两个坐标轴所围成的平面闭区域D上的最大值和最小值。
admin
2019-12-06
64
问题
求函数f(x,y)=xy-
-y在由抛物线y=4-x
2
(x≥0)与两个坐标轴所围成的平面闭区域D上的最大值和最小值。
选项
答案
区域D如图所示。 [*] (1)边界L
1
:y=0(0≤x≤2),此时f(x,0)=[*], 函数在此边界的最大值为f(0,0)=0,最小值为f(2,0)=[*] 边界L
2
:x=0(0≤y≤4),则f(0,y)=﹣y,函数在此边界的最大值为f(0,0)=0,最小值为f(0,4)=﹣4。 边界L
3
:y=4-x
2
(x≥0), 则f(x,y)=xy-[*]-y=x(4-x
2
)-[*]-(4-x
2
), 令f
’
(x)=﹣3x
2
+2x+[*]=0, 解得x=[*](舍去),x=[*],又 f
’’
(x)=﹣6x+2,f
’’
(4/3)﹤0, 故该函数在此边界的最大值为[*]。 (2)区域D内部,f(x,y)=xy-[*]-y,则 [*] 解得x=1,y=4/3, f
xx
’’
(x,y)=0, f
xy
’’
(x,y)=1, f
yy
’’
(x,y)=0, 故AC-B
2
﹤0,函数在区域D内部不取极值。 综上所述,函数在区域D上的最大值为f(0,0)=0;最小值为f(0,4)=﹣4。
解析
转载请注明原文地址:https://kaotiyun.com/show/VUA4777K
0
考研数学二
相关试题推荐
设A,B都是n阶矩阵,其中B是非零矩阵,且AB=O,则().
设向量β可由向量组α1,α2,…,α3线性表示,但不能由向量组(Ⅰ):α1,α2,…,αm-1线性表示,记向量组(Ⅱ):α1,α2,…,αm-1,β,则【】
设A为三阶矩阵,方程组Ax=0的基础解系为α1,α2,又λ=-2为A的一个特征值,其对应的特征向量为α3,下列向量中是A的特征向量的是().
已知三阶矩阵A与三维非零列向量α,若向量组α,Aα,A2α线性无关,而A3α=3Aα一2A2α,那么矩阵A属于特征值λ=一3的特征向量是()
以yOz坐标面上的平面曲线段y=f(z)(0≤z≤h)绕z轴旋转所构成的旋转曲面和χOy坐标面围成一个无盖容器,已知它的底面积为16πcm3,如果以3cm3/s的速率把水注入容器,水表面的面积以πcm3/s增大,试求曲线y=f(χ)的方程________.
求极限
设抛物线y=ax2+bx+c(a<0)满足:(1)过点(0,0)及(1,2);(2)抛物线y=ax2+bx+c与抛物线y=一x2+2x所围图形的面积最小,求a,b,c的值.
求极限
微分方程y’’一λ2y=eλx+e-λx(λ>0)的特解形式为()
随机试题
乙胺丁醇的不良反应吡嗪酰胺的不良反应
检查体温计准确性的正确方法是将体温计的水银柱甩至35℃以下,同一时间放入39℃的水中
房地产估价机构依法从事房地产估价活动不受行政区域、行业限制。()
基金份额持有人享有的权利不包括()。
量化评估对组织人力资源管理活动的重要意义不包括()。
工作岗位设计方法研究具体应用的技术包括哪些分析工具?
当人从黑暗走入亮处后,视网膜的光感受阈限会迅速提高,这个过程是()。
根据以下资料,回答下列问题。与2007年相比,2010年咨询出口额占我国服务贸易出口的比重:
设z=z(x,y)具有二阶连续偏导数,试确定常数a与b,使得经变换μ=x+ay,v=x+by,可将z关于x,y的方程。化为z关于u,v的方程,并求出其解z=z(x+ay,x+by).
Herearethethreemostcommonmistakeslanguagelearnersmake—andhowtocorrectthem.RigidthinkingLinguistshavefound
最新回复
(
0
)