首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设φ1(x),φ2(x),φ3(x)为二阶非齐次线性方程y"+a1(x)y’+a2(x)y=f(x)的三个线性无关解,则该方程的通解为( ).
设φ1(x),φ2(x),φ3(x)为二阶非齐次线性方程y"+a1(x)y’+a2(x)y=f(x)的三个线性无关解,则该方程的通解为( ).
admin
2018-01-12
38
问题
设φ
1
(x),φ
2
(x),φ
3
(x)为二阶非齐次线性方程y"+a
1
(x)y’+a
2
(x)y=f(x)的三个线性无关解,则该方程的通解为( ).
选项
A、C
1
[φ
1
(x)+φ
2
(x)]+C
2
φ
3
(x)
B、C
1
[φ
1
(x)一φ
2
(x)]+C
2
φ
3
(x)
C、C
1
[φ
1
(x)+φ
2
(x)]+C
2
[φ
1
(x)一φ
3
(x)]
D、C
1
φ
1
(x)+C
2
φ
2
(x)+C
3
φ
3
(x),其中C
1
+C
2
+C
3
=1
答案
D
解析
因为φ
1
(x),φ
2
(x),φ
3
(x)为方程y"+a
1
(x)y’+a
2
(x)y=f(x)的三个线性无关解,
所以φ
1
(x)一φ
3
(x),φ
2
(x)一φ
3
(x)为方程y"+a
1
(x)y’+a
2
(x)y=0的两个线性无关解,
于是方程y"+a
1
(x)y’+a
2
(x)y=f(x)的通解为
C
1
[φ
1
(x)一φ
3
(x)]+C
2
[φ
2
(x)一φ
3
(x)]+φ
3
(z)
即C
1
φ
1
(x)+C
2
φ
2
(x)+C
3
φ
3
(x),其中C
3
=1一C
1
一C
2
或C
1
+C
2
+C
3
=1,选(D).
转载请注明原文地址:https://kaotiyun.com/show/l0r4777K
0
考研数学一
相关试题推荐
设f(x)∈C[0,1],f(x)>0.证明积分不等式:
设k为常数,方程在(0,+∞)内恰有一根,求k的取值范围.
设总体X的方差为1,根据来自X的容量为100的简单随机样本,测得样本均值为5,则X的数学期望的置信度近似等于0.95的置信区间为__________.
求幂级数的收敛域与和函数,并求的和.
设X和Y相互独立都服从0—1分布:P{X=1)=P{Y=1)=0.6.试证明:U=X+Y,V=X—Y不相关,但是不独立.
求二阶常系数线性微分方程y’’+λy’=2x+1的通解,其中λ为常数.
设有两个非零矩阵A=[a1,a2,…,an]T,B=[b1,b2,…,bn]T.计算ABT与ATB;
设随机变量X的概率密度为已知,求(1)a,b,c的值;(2)随机变量Y=ex的数学期望和方差.
设向量α=[a1,a2……an]T,β=[b1,b2……bn]T都是非零向量,且满足条件αTβ=0,记n阶矩阵A=αβT,求:A2;
随机试题
Whenafire______attheNationalExhibitioninLondon,atleasttenpricelesspaintingswerecompletelydestroyed.
在蛋白质消化中起外肽酶作用的是
下列说法正确的是()。
如下图所示,AC杆所受的内力为( )。
在劳动关系的调整方式中,()的基本特点是体现劳动关系当事人双方的意志。
根据我国现行《宪法》的规定,退休人员的生活受到()的保障。
下列行为中不属于行政行为的是()。
一位研究人员希望了解他所在社区的人们喜欢的口味是可口可乐还是百事可乐。他找了些喜欢可口可乐的人,要他们在一杯可口可乐和一杯百事可乐中,通过品尝指出喜好。杯子上不贴标签,以免商标引发明显的偏见,只是将可口可乐的杯子标志为“M”,将百事可乐的杯子标志为“Q”。
我决定搬出去住不是因为学校环境不好,而是学校晚上十一点必须关灯睡觉。我的习惯是晚上十一点开始学习。为了能用好晚上的时间,我决定搬出去住。“我”搬出去,是因为:
在进行蝶式套利时,投机者必须同时下达()个指令。
最新回复
(
0
)