首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
证明:方程|x|1/4+|x|1/2-1/2cosx=0在(-∞,+∞)内仅有两个实根.
证明:方程|x|1/4+|x|1/2-1/2cosx=0在(-∞,+∞)内仅有两个实根.
admin
2021-11-09
53
问题
证明:方程|x|
1/4
+|x|
1/2
-1/2cosx=0在(-∞,+∞)内仅有两个实根.
选项
答案
证:由于|x|
1/4
+|x|
1/2
-1/2cosx为偶函数,只要证明所给方程在(x,+∞)仅有一个实根即可. 设F(x)=x
1/4
+x
1/2
-1/2cosx. 先证根的存在性. 因F(0)=-1/2<0,可知x=0不是方程F(x)=0的根,又因lim F(x)=+∞,故存在一点x。>0,使得F(x。)>0,例如,取x。=1,便有F(1)=1+1-1/2>0,于是,由零点定理,在区间(0,1)内F(x)=0至少存在一个根. 注意到当x>1时,F(x)恒大于0,故在区间(1,+∞)内方程F(x)=0不可能有根. 再证根的唯一性. 因为0<x<1<π/2时,函数x
1/4
、x
1/2
,-cosx都是单调增加的,所以F(x)在(0,1)内单调增加,从而F(x)=0在(0,1)内仅有一个实根. 综上,又因为|x|
1/4
+|x|
1/2
-1/2cosx为偶函数,即所给方程在(-∞,+∞)内仅有两个实根.
解析
转载请注明原文地址:https://kaotiyun.com/show/fgy4777K
0
考研数学二
相关试题推荐
=_______.
设f(χ)二阶可导,f(1)=0,令φ(χ)=χ2f(χ),证明:存在ξ∈(0,1),使得φ〞(ξ)=0.
设f(χ)在[0,1]上连续,在(0,1)内可导,且∫01f(t)dt=0证明:存在ξ∈(0,1),使得f(ξ)=∫0ξf(t)dt.
设f(χ)在[0,1]上连续且满足f(0)=1,f′(χ)-f(χ)=a(χ-1).y=f(χ),χ=0,χ=1,y=0围成的平面区域绕χ轴旋转一周所得的旋转体体积最小,求f(χ).
设二阶常系数非齐次线性微分方程y〞+y′+qy=Q(χ)有特解y=3e-4χ+χ2+3χ+2,则Q(χ)=_______,该微分方程的通解为_______.
设ε为f(x)=arctanx在[0,a]上使用微分中值定理的中值,则为()。
设方程组有无穷多个解,,为矩阵A的分别属于特征值λ1=1,λ2=-2,λ3=-1的特征向量。求A.
设A为三阶矩阵,且有三个互异的正的特征值,设矩阵B=(A*)2-4E的特征值为0,5,32.求A-1的特征值并判断A-1是否可对角化。
四阶行列式的值等于()
设α1,α2,α3,β1,β2都是四维列向量,KISt阶行列式|α1,α2,α3,β1|=m,|α1,α2,β2,α3|=n,则四阶行列式|α3,α2,α1,β1+β2|等于()
随机试题
身高不等的9个人站成一排照相,要求身高最高的人排在中间,按身高向两侧递减,且靠近中间的人都比稍远的人高。共有多少种排法?
成对的脑颅骨是()
关于马来酸氯苯那敏的性质描述中正确的是
A、15~18B、13~16C、8~16D、7~9E、3~8O/W型乳化剂的HLB值()
以下哪些说法不符合我国专利法的规定?
把世界看作是从来如此、始终不变的自然界,人不过是从属于自然的一部分。这种观点是()。
2,9,64,625,()
材料2与材料3在本质上是否相同?比较材料1、2、3,请回答马克思主义是如何看待科学技术的?
利用“粘贴URL”菜单连接北京大学。
Fromaveryearlyage,perhapstheageoffiveorsix,IknewthatwhenIgrewIshouldbeawriter.Betweentheagesofabouts
最新回复
(
0
)