首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵A=(a1,a2,a3,a4),其中a2,a3,a4线性无关,a1=2a2—a3,向量b=a1+a2+a3+a4,求方程Ax=b的通解.
设矩阵A=(a1,a2,a3,a4),其中a2,a3,a4线性无关,a1=2a2—a3,向量b=a1+a2+a3+a4,求方程Ax=b的通解.
admin
2021-02-25
30
问题
设矩阵A=(a
1
,a
2
,a
3
,a
4
),其中a
2
,a
3
,a
4
线性无关,a
1
=2a
2
—a
3
,向量b=a
1
+a
2
+a
3
+a
4
,求方程Ax=b的通解.
选项
答案
方法一:因为a
1
=2a
2
一a
3
,则a
1
,a
2
,a
3
线性相关,从而可得a
1
,a
2
,a
3
,a
4
线性相关,而a
2
,a
3
,a
4
线性无关,所以R(A)=3,从而可得方程Ax=0的基础解系中解向量个数为1,由a
1
=2a
2
—a
3
可得O=a
1
—2a
2
+a
3
=(a
1
,a
2
,a
3
,a
4
)[*] 所以x=(1,一2,1,0)
T
是Ax=0的一基础解系. 又因为b=a
1
+a
2
+a
3
+a
4
=(a
1
,a
2
,a
3
,a
4
)[*],所以(1,1,1,1)
T
是Ax=b的一个特解.所以方程Ax=b的通解为x=k[*],k∈R. 方法二:令x=(x
1
,x
2
,x
3
,x
4
)
T
是方程Ax=b的解,即有x
1
a
1
+x
2
a
2
+x
3
a
3
+x
4
a
4
=b.所以 x
1
(2a
2
一a
3
)+x
2
a
2
+x
3
a
3
+x
4
a
4
=a
1
+a
2
+a
3
+a
4
, 即(2x
1
+x
2
)a
2
+(x
3
一x
1
)a
3
+x
4
a
4
=2a
2
一a
3
+a
2
+a
3
+a
4
, 即(2x
1
+x
2
—3)a
2
+(一x
1
+x
3
)a
3
+(x
4
—1)a
4
=0. 因为a
2
,a
3
,a
4
线性无关,从而有[*] 解方程组可得[*],k∈R,即为Ax=b的通解.
解析
转载请注明原文地址:https://kaotiyun.com/show/V484777K
0
考研数学二
相关试题推荐
设有向量组(I):α1=(1,0,2)T,α2=(1,1,3)T,α1=(1,-1,a+2)T和向量组(II):β1=(1,2,a+3)T,β2=(2,1,a+6)T,β3=(2,1,a+4)T.试问:当a为何值时,向量组(I)与(II)等价?当以为何值
设向量组α1,α2,…,αs为齐次线性方程组AX=0的一个基础解系,Aβ≠0.证明:齐次线性方程组BY=0只有零解,其中B=(β,β+α1,…,β+αs).
设z=f(2x一y)+g(x,xy),其中函数f(t)二阶可导,g(u,υ)具有连续二阶偏导数,求
下列矩阵中两两相似的是
一个瓷质容器,内壁和外壁的形状分别为抛物线y=。把它铅直地浮在水中,再注入比重为3的溶液。问欲保持容器不沉没,注入液体的最大深度是多少?(长度单位为厘米)
已知四维列向量α1,α2,α3线性无关,若向量βi(i=1,2,3,4)是非零向量且与向α1,α2,α3均正交,则向量组β1,β2,β3,β4的秩为().
设f(x)在区间[a,b]上具有二阶导数,且f(a)=f(b)=0,f’(a).f’(b)>0.试证明:存在ξ∈(a,b)和η∈(a,b),使f(ξ)=0及f"(η)=0.
已知y1=xex+e2x,y2=xex+e-x,y3=xex+e2x-e-x是某二阶线性非齐次微分方程的三个解,求此微分方程.
(13)设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,记(Ⅰ)证明二次型f对应的矩阵为2ααT+ββT.(Ⅱ)若α,β正交且均为单位向量,证明f在正交变换下的标准形为2y12+y22.
若方程组有解,则常数a1,a2,a3,a4应满足的条件是______.
随机试题
在下列断定中,违反矛盾律的是()
除对原发病进行综合治疗外,治疗肺气肿、改善肺功能的重要措施为()
对发行债券的说法中不正确的是()。
下述中正确的是()。
下列各项中,属于会计工作的政府监督主体的有()。
下列各项属于影响实载率的因素有()。
让人高兴的语言往往柔和甜美,所以称之为()
联系实际,谈谈正确儿童观的内容
辐射指的是能量在空间传播的过程。下列关于辐射的说法不成立的是()。
下列选项中,属于唐朝“杂律”规定的内容有()。
最新回复
(
0
)