首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵A=(a1,a2,a3,a4),其中a2,a3,a4线性无关,a1=2a2—a3,向量b=a1+a2+a3+a4,求方程Ax=b的通解.
设矩阵A=(a1,a2,a3,a4),其中a2,a3,a4线性无关,a1=2a2—a3,向量b=a1+a2+a3+a4,求方程Ax=b的通解.
admin
2021-02-25
18
问题
设矩阵A=(a
1
,a
2
,a
3
,a
4
),其中a
2
,a
3
,a
4
线性无关,a
1
=2a
2
—a
3
,向量b=a
1
+a
2
+a
3
+a
4
,求方程Ax=b的通解.
选项
答案
方法一:因为a
1
=2a
2
一a
3
,则a
1
,a
2
,a
3
线性相关,从而可得a
1
,a
2
,a
3
,a
4
线性相关,而a
2
,a
3
,a
4
线性无关,所以R(A)=3,从而可得方程Ax=0的基础解系中解向量个数为1,由a
1
=2a
2
—a
3
可得O=a
1
—2a
2
+a
3
=(a
1
,a
2
,a
3
,a
4
)[*] 所以x=(1,一2,1,0)
T
是Ax=0的一基础解系. 又因为b=a
1
+a
2
+a
3
+a
4
=(a
1
,a
2
,a
3
,a
4
)[*],所以(1,1,1,1)
T
是Ax=b的一个特解.所以方程Ax=b的通解为x=k[*],k∈R. 方法二:令x=(x
1
,x
2
,x
3
,x
4
)
T
是方程Ax=b的解,即有x
1
a
1
+x
2
a
2
+x
3
a
3
+x
4
a
4
=b.所以 x
1
(2a
2
一a
3
)+x
2
a
2
+x
3
a
3
+x
4
a
4
=a
1
+a
2
+a
3
+a
4
, 即(2x
1
+x
2
)a
2
+(x
3
一x
1
)a
3
+x
4
a
4
=2a
2
一a
3
+a
2
+a
3
+a
4
, 即(2x
1
+x
2
—3)a
2
+(一x
1
+x
3
)a
3
+(x
4
—1)a
4
=0. 因为a
2
,a
3
,a
4
线性无关,从而有[*] 解方程组可得[*],k∈R,即为Ax=b的通解.
解析
转载请注明原文地址:https://kaotiyun.com/show/V484777K
0
考研数学二
相关试题推荐
设A,B为n阶矩阵,|λE-A|=|λE-B|且A,B都可相似对角化,证明:A~B.
设α1,α2,α3为四维列向量组,α1,α2线性无关,α3=3α1+2α2,A=(α1,α2,α3),求Ax=0的一个基础解系.
已知向量组(Ⅰ)能由向量组(Ⅱ)线性表出,且秩(Ⅰ)=秩(Ⅱ),证明向量组(Ⅰ)与向量组(Ⅱ)等价.
一个瓷质容器,内壁和外壁的形状分别为抛物线y=。把它铅直地浮在水中,再注入比重为3的溶液。问欲保持容器不沉没,注入液体的最大深度是多少?(长度单位为厘米)
设A=,若存在秩大于1的三阶矩阵B使得BA=0,则An=_______.
设y″的系数为1的某二阶常系数非齐次线性微分方程的两个特解为y1*=(1-x+x2)ex与y1*=x2ex则该微分方程为______.
设3阶矩阵A=(α1,α2.α3)有3个不同的特征值,且α3=α1+2α2.若β=α1+α2+α3,求方程组Ax=β的通解.
(13)设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,记(Ⅰ)证明二次型f对应的矩阵为2ααT+ββT.(Ⅱ)若α,β正交且均为单位向量,证明f在正交变换下的标准形为2y12+y22.
设三阶方阵A=[A1,A2,A3],其中Ai(i=1,2,3)为三维列向量,且A的行列式|A|=-2,则行列式|-A1-2A2,2A2+3A3,-3A3+2A1|=_______.
设3阶矩阵A的特征值为2,3,λ.如果|2A|=-48,则λ=______.
随机试题
外感风寒湿邪,症见恶寒发热,无汗,头痛项强,肢体酸楚疼痛,口苦而渴者,治宜选用
常见的精原细胞瘤的超声表现是
A.始基子宫B.幼稚子宫C.鞍状子宫D.纵隔子宫E.双子宫患者,18岁,初潮月经量少来诊,最可能的是
特殊设备安全监督检验费按照建设项目所在省(市、自治区)安全监察部门的规定标准计算,无具体规定的,在编制投资估算和概算时可按受检设备()的比例估算。
对()的施工程序安排,既要考虑生产时为企业服务,又要考虑在基建施工时为施工服务的可能性。
燃烧可以分为()
下列情形中,不可以采取借款人自主支付的是()。
1983年,加德纳在著作《智能的结构》中提出了无论是在定义、评价手段还是在目的方面都不同于传统智力的“多元智力”概念。多元智力理论于20世纪90年代被引入国内,经过几年的发展,到了90年代末,该理论影响日渐广泛。2000年之后,关于多元智力理论的译著、论著
()对于质量相当于宣传对于()
Whilestillcatching-uptomeninsomespheresofmodernlife,womenappeartobewayaheadinatleastoneundesirablecategory.
最新回复
(
0
)