首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A,B为三阶非零矩阵,且 β1=(0,1,一1)T,β2=(a,2,1)T,β3=(b,1,0)T是齐次线性方程组Bx=0的三个解向量,且Ax=β3有解。求 (Ⅰ)a,b的值; (Ⅱ)求Bx=0的通解。
已知A,B为三阶非零矩阵,且 β1=(0,1,一1)T,β2=(a,2,1)T,β3=(b,1,0)T是齐次线性方程组Bx=0的三个解向量,且Ax=β3有解。求 (Ⅰ)a,b的值; (Ⅱ)求Bx=0的通解。
admin
2017-12-29
81
问题
已知A,B为三阶非零矩阵,且
β
1
=(0,1,一1)
T
,β
2
=(a,2,1)
T
,β
3
=(b,1,0)
T
是齐次线性方程组Bx=0的三个解向量,且Ax=β
3
有解。求
(Ⅰ)a,b的值;
(Ⅱ)求Bx=0的通解。
选项
答案
(Ⅰ)由B≠O,且β
1
,β
2
,β
3
是齐次线性方程组Bx=O的三个解向量可知,向量组β
1
,β
2
,β
3
必线性相关,于是 |β
1
,β
2
,β
3
|=[*] 解得a=3b。 由Ax=β
3
有解可知,线性方程组Ax=β
3
的系数矩阵的秩等于增广矩阵的秩,对增广矩阵作初等行变换得 [*] 所以b=5,a=3b=15。 (Ⅱ)因为B≠O,所以r(B)≥1,则3一r(B)≤2。又因为β
1
,β
2
是Bx=0的两个线性无关的解,故3一r(B)≥2,综上,r(B)=1,所以β
1
,β
2
是Bx=0的一个基础解系,于是Bx=0的通解为 x=k
1
β
1
+k
1
β
2
,其中k
1
,k
2
为任意常数。
解析
转载请注明原文地址:https://kaotiyun.com/show/lFX4777K
0
考研数学三
相关试题推荐
函数F(x)=∫1x(1-)dt(x>0)的递减区间为________.
设有两个非零矩阵A=[α1,α2,…,αn]T,B=[b1,b2,…,bn]T.计算ABT与ATB;
n维向量组α1,α2,…,αs(3≤s≤n)线性无关的充要条件是()
微分方程y"一7y’=(x一1)2由待定系数法确定的特解形式(系数的值不必求出)是________.
设X与Y为具有二阶矩的随机变量,且设Q(a,b)=E[Y一(a+bX)]2,求a,b使Q(a,b)达到最小值Qmin,并证明:Qmin=DY(1一ρXY2).
设函数y(x)(x≥0)二阶可导且y’(x)>0,y(0)=1.过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S1,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S2,并设2S1~S2恒
z’x(x0,y0)=0和z’y(x0,y0)=0是函数z=z(x,y)在点(x0,y0)处取得极值的()
设A为m×n矩阵,齐次线性方程组AX=0仅有零解的充分条件是()
设A为3阶实对称矩阵,A的秩为2,且(Ⅰ)求A的所有特征值与特征向量。(Ⅱ)求矩阵A。
设行列式不具体计算D,试利用行列式的定义证明D=0.
随机试题
有关游泳池水质标准。以下叙述错误的是()。
请完成下列Java程序:创建一个下拉式菜单,菜单项包括3个CheckboxMenultem(复选框),一条分割线和一个Exit项。要求打开或关闭复选框时,确定是哪个被切换,是开还是关,并输出它的状态;选择Exit项能够退出程序。注意:请勿改动mai
把不同特性或不同信源的信号进行合成,以便共享通信资源,这种技术就是()
对比剂直接引入人体的方法的叙述,错误的是
本期的销项税额为( )万元。本期转出的进项税额为( )万元。
简述小学德育的方法。
人格的本质特征包括()
戴老师很担心,同一批学生在第二次参加同样内容的人格测验时获得的分数为什么与上一次不同。他所担心的是下列哪一个概念所反映的内容?()
某年的3月份共有5个星期三,并且第一天不是星期一,最后一天不是星期五,则该年的3月15日是()。
对股票A和股票B的两个(超额收益率)指数模型回归结果如下表。在这段时间内的无风险利率为6%,市场平均收益率为14%,对项目的超额收益以指数回归模型来测度。计算每只股票的α、信息比率、夏普测度、特雷诺测度。
最新回复
(
0
)