首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A,B为三阶非零矩阵,且 β1=(0,1,一1)T,β2=(a,2,1)T,β3=(b,1,0)T是齐次线性方程组Bx=0的三个解向量,且Ax=β3有解。求 (Ⅰ)a,b的值; (Ⅱ)求Bx=0的通解。
已知A,B为三阶非零矩阵,且 β1=(0,1,一1)T,β2=(a,2,1)T,β3=(b,1,0)T是齐次线性方程组Bx=0的三个解向量,且Ax=β3有解。求 (Ⅰ)a,b的值; (Ⅱ)求Bx=0的通解。
admin
2017-12-29
61
问题
已知A,B为三阶非零矩阵,且
β
1
=(0,1,一1)
T
,β
2
=(a,2,1)
T
,β
3
=(b,1,0)
T
是齐次线性方程组Bx=0的三个解向量,且Ax=β
3
有解。求
(Ⅰ)a,b的值;
(Ⅱ)求Bx=0的通解。
选项
答案
(Ⅰ)由B≠O,且β
1
,β
2
,β
3
是齐次线性方程组Bx=O的三个解向量可知,向量组β
1
,β
2
,β
3
必线性相关,于是 |β
1
,β
2
,β
3
|=[*] 解得a=3b。 由Ax=β
3
有解可知,线性方程组Ax=β
3
的系数矩阵的秩等于增广矩阵的秩,对增广矩阵作初等行变换得 [*] 所以b=5,a=3b=15。 (Ⅱ)因为B≠O,所以r(B)≥1,则3一r(B)≤2。又因为β
1
,β
2
是Bx=0的两个线性无关的解,故3一r(B)≥2,综上,r(B)=1,所以β
1
,β
2
是Bx=0的一个基础解系,于是Bx=0的通解为 x=k
1
β
1
+k
1
β
2
,其中k
1
,k
2
为任意常数。
解析
转载请注明原文地址:https://kaotiyun.com/show/lFX4777K
0
考研数学三
相关试题推荐
设f(x)在区间[-a,a](a>0)上具有二阶连续导数,f(0)=0.证明:存在η∈[-a,a],使a3f"(η)=3∫-aaf(x)dx.
证明:r(A+B)≤r(A)+r(B).
设有两个非零矩阵A=[α1,α2,…,αn]T,B=[b1,b2,…,bn]T.设C=E一ABT,其中E为n阶单位阵.证明:CTC=E—BAT—ABT+BBT的充要条件是ATA=1.
设A=E+αβT,其中α=[α1,α2,…,αn]T≠0,β=[b1,b2,…,bn]T≠0,且αTβ=2.求A的特征值和特征向量;
设函数y=f(x)由参数方程(t>一1)所确定,其中φ(t)具有二阶导数,且已知证明:函数φ(t)满足方程=3(1+t).
设函数且1+bx>0,则当f(x)在x=0处可导时,f’(0)=________.
已知4阶方阵A=[α1,α2,α3,α4],α1,α2,α3,α4均为4维列向量,其中α2,α3,α4线性无关,α1=2α2一α3,如果β=α1+α2+α3+α4,求线性方程组AX=β的通解.
已知问λ取何值时,β不能由α1,α2,α3线性表出.
设X与Y为具有二阶矩的随机变量,且设Q(a,b)=E[Y一(a+bX)]2,求a,b使Q(a,b)达到最小值Qmin,并证明:Qmin=DY(1一ρXY2).
下列函数中在点x=0处可微的是().
随机试题
高速缓存(Cache)可以看作是主存的延伸,与主存统一编址,接受CPU的访问,但其速度要比主存高得多。()
医院分级护理是根据病人的()。
4份生理盐水,3份10%葡萄糖,2份1.4%碳酸氢钠,其张力为
财产所有权的权能包括占有权、使用权、收益权和处分权,其中,()是所有人的最基本的权利,是所有权内容的核心。
在行政法律关系中,与行政机关处于相对应一方的公民、法人和其他组织称为()。
有朋友对我说,你们古董行不好,净卖假货。我深刻反省,究其原因。文物的文化含量太大,难以一目了然。自古文物收藏凭的是眼力,玩的是心跳,至少宋代以来许多国宝就在真假之间争论。翻来覆去者并不罕见。历史上被判了死刑的文物又起死回生也不是凤毛麟角。由于人类对自身文化
给定资料1.“一个好媳妇,三代好子孙。”媳妇好不好,上台夸夸就知道。每年春天,X市Y区各个乡镇社区都要举行“夸媳妇比赛”。瑞霞是张庄村的年轻媳妇。五年前,刚进婆家门,她就承担起操持家务、照顾卧病在床的婆婆的重任。一日三餐按时将可口的饭菜端到全家
特里芬难题
下列关于晚清修律的表述,正确的有()。
在标准ASCII码表中,已知英文字母D的ASCII码是68,英文字母A的ASCII码是()。
最新回复
(
0
)