首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设三元二次型f=xTAx的二次型矩阵A的特征值为λ1=λ2=1,λ3=-1,ξ3=(0,1,1)T为对应于λ3=-1的特征向量。 求f=xTAx的表达式。
设三元二次型f=xTAx的二次型矩阵A的特征值为λ1=λ2=1,λ3=-1,ξ3=(0,1,1)T为对应于λ3=-1的特征向量。 求f=xTAx的表达式。
admin
2022-03-23
88
问题
设三元二次型f=x
T
Ax的二次型矩阵A的特征值为λ
1
=λ
2
=1,λ
3
=-1,ξ
3
=(0,1,1)
T
为对应于λ
3
=-1的特征向量。
求f=x
T
Ax的表达式。
选项
答案
由上一问可得知,对应于特征值1的两个线性无关的特征向量可取为x
2
+x
3
=0的基础解系 ξ
1
=(1,0,0)
T
,ξ
2
=(0,1,-1)
T
将ξ
1
=(1,0,0)
T
,ξ
2
=(0,1,-1)
T
,ξ
3
=(0,1,1)
T
单位化得 η
1
=ξ
1
=(1,0,0)
T
,η
2
=[*],η
3
=[*] 令Q=(η
1
,η
2
,η
3
)=[*],则Q是一个正交矩阵,且 Q
T
AQ=Q
-1
AQ=[*] 由此可得A=QAQ
-1
=QAQ
T
=[*],于是f=x
1
2
-2x
2
x
3
。
解析
常见的题目是,已知A是实对称矩阵,且λ
1
≠λ
2
,有ξ
1
⊥ξ
2
;此题的命题特色是反其道而行之,需要重视。
转载请注明原文地址:https://kaotiyun.com/show/lIR4777K
0
考研数学三
相关试题推荐
设随机事件A与B互不相容,且P(A)>0,P(B)>0,则下列结论中一定成立的是
设un≠0,(n=1,2,…),且=1,则极数【】
在最简单的全概率公式P(B)=P(A)P(B|A)+P()P(B|)中,要求事件A与B必须满足的条件是()
设A是n阶实对称矩阵,P足n阶可逆矩阵.已知n维列向量α是A的属于特征值λ的特征向量,则矩阵(p-1AP)T属于特征值λ的特征向量是
在全概率公式P(B)=中,除了要求条件B是任意随机事件及P(Ai)>0(i=1,2,…,n)之外,我们可以将其他条件改为()
二次型f(x1,x2,x3)=2x1x2+2x1x3+2x2x3的规范形为().
设随机变量序列X1,X2,…,Xn,…相互独立,则根据辛钦大数定律,依概率收敛于其数学期望,只要{Xn:n≥1}()
设区域D={(x,y)|x2+y2≤4,x≥0,y≥0},f(x)为D上的正值连续函数,a,b为常数,则=()
设A为m×n矩阵,齐次线性方程组Ax=0仅有零解的充分条件是().
(15年)(Ⅰ)设函数u(χ),v(χ)可导,利用导数定义证明[u(χ)v(χ)]′=u′(χ)v(χ)+u(χ)v′(χ);(Ⅱ)设函数u1(χ),u2(χ),…,un(χ)可导,f(χ)=u1(χ)u2(χ)…un(χ),写出f(χ)的求导公
随机试题
为了保证建设工程的实施能够有足够的时间、空间、人力、财力和物力来保证计划的可行性,首先应在充分考虑( )等因素的前提下制定计划。
下列选项中,不属于贷前调查方法的是()。
下列对税负转嫁的说法,正确的是()。
生产物流控制内容不包括()。
在西方教育史上,被认为史现代教育代言人的是()
单位举办绿色环保宣传周活动,但是没有专项经费,宣传中也不允许耗费纸张,你怎么开展此次活动?
按照《巴塞尔协议Ⅲ》的要求,为了防止银行信贷增长过快并导致系统性风险的积累,要求银行在经济上行期提取一定比例的(),以便经济下行时释放。
在FDM中,主要通过(1)技术,使各路信号的带宽(2)。使用FDM的所有用户(3)。从性质上说,FDM比较适合于传输(4),FDM的典型应用是(5)。
Itisduetotheinventionofthecomputerthatmanhasbeenabletoworksomanywondersinthepastfewyears.Acase______is
A.decreasingB.underlinesC.deliveredD.missionsE.becauseF.putoffG.demandH.thoughI.playJ.improvingK.t
最新回复
(
0
)