首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(f)在[0,π]上连续,在(0.π)内可导,且∫0πf(x)cosxdx=∫0πf(x)sinxdx=0.证明:存在ξ∈(0,π),使得f’(ξ)=0.
设f(f)在[0,π]上连续,在(0.π)内可导,且∫0πf(x)cosxdx=∫0πf(x)sinxdx=0.证明:存在ξ∈(0,π),使得f’(ξ)=0.
admin
2015-06-30
53
问题
设f(f)在[0,π]上连续,在(0.π)内可导,且∫
0
π
f(x)cosxdx=∫
0
π
f(x)sinxdx=0.证明:存在ξ∈(0,π),使得f’(ξ)=0.
选项
答案
令F(x)=∫
0
x
f(t)sintdt,因为F(0)=F(π)=0,所以存在x
1
∈(0,π),使得 F’(x
1
)=0,即f(x
1
)sinx
1
=0,又因为sinx
1
≠0,所以f(x
1
)=0. 设x
1
是f(x)在(0,π)内唯一的零点,则当x∈(0,π)且x≠x
1
时,有sin(x-x
1
)f(x) 恒正或恒负,于是∫
0
π
sin(x-x
1
)f(x)dx≠0. 而∫
0
π
sin(x-x
1
)f(x)dx=cosx
1
∫
0
π
f(x)sinxdx-sinx
1
∫
0
π
f(x)cosxdx=0,矛盾,所以 f(x)在(0,π)内至少有两个零点.不妨设f(x
1
)=f(x
2
)=0,x
1
,x
2
∈(0,π)且x
1
<x
2
,由罗尔中值定理,存在ξ∈(x
1
,x
2
)[*](0,π),使得f’(ξ)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/yf34777K
0
考研数学二
相关试题推荐
级数()
8/10.
设矩阵A=可逆,向量α=(1,b,1)T是矩阵A*的一个特征向量,b>0,λ是a对应的特征值,则(a,b,λ)为()
(Ⅰ)设A,B为n阶可相似对角化矩阵,且有相同特征值,证明:矩阵A,B相似.(Ⅱ)设,求可逆矩阵P,使得P﹣1AP=B.
设X1,X2,…,Xn独立同分布,且Xi(i=1,2,…,n)服从参数为λ的指数分布,则下列各式成立的是()(其中Ф(x)表示标准正态分布的分布函数)
微分方程y"一3y’+2y=2ex满足的特解为______.
由结论可知,若令φ(x)=xf(x),则φˊ(x)=f(x)+xfˊ(x).因此,只需证明φ(x)在[0,1]内某一区间上满足罗尔定理的条件.令φ(x)=xf(x),由积分中值定理可知,存在η∈(0,1/2)使[*]
设A,B是二阶矩阵,|A|<0,A2=E,且B满足B2=E,AB=-BA.证明存在二阶可逆矩阵P,使得P-1AP=且P-1BP=.
设不恒为零的函数f(x)在[0,1]上有二阶连续导数,且f(0)=f(1)=0.记M={|f(x)|)}.证明:∫01[f(x)+x(1-x)f”(x)]dx=0.
对于随机变量X1,X2,…,Xn下列说法不正确的是().
随机试题
违反机动车停放、临时停放规定,驾驶人不在现场,妨碍其他车辆、行人通行的,公安机关交通管理部门可以将车拖至不妨碍交通的地点或其指定的地点。
治疗热结便秘可选用的药物有
急性肾衰竭少尿期最常见的酸碱失衡是
依据《工伤保险条例》的规定,工伤保险补偿实行()补偿的原则。
关于工程造价管理工作要素,下列叙述正确的有( )。
正确发挥主观能动性的前提是()。
为了更好地完成教学任务,教师可在一节课上采用几种不同的教学方法。()
()不得到与原工作业务直接相关的企业或者其他营利性组织任职,不得从事与原工作业务直接相关的营利性活动。
A、Heboughtabighouseintheopenair.B、Heboughtclothesmadeofclothbagsandsacks.C、Heinvestedinhisapplebusinessa
【B1】【B10】
最新回复
(
0
)