首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求下列二重积分: (Ⅰ)I=,其中D为正方形域:0≤x≤1,0≤y≤1; (Ⅱ)I=|3x+4y|dxdy,其中D:x2+y2≤1; (Ⅲ)I=ydxdy,其中D由直线x=-2,y=0,y=2及曲线x=所围成.
求下列二重积分: (Ⅰ)I=,其中D为正方形域:0≤x≤1,0≤y≤1; (Ⅱ)I=|3x+4y|dxdy,其中D:x2+y2≤1; (Ⅲ)I=ydxdy,其中D由直线x=-2,y=0,y=2及曲线x=所围成.
admin
2019-02-26
29
问题
求下列二重积分:
(Ⅰ)I=
,其中D为正方形域:0≤x≤1,0≤y≤1;
(Ⅱ)I=
|3x+4y|dxdy,其中D:x
2
+y
2
≤1;
(Ⅲ)I=
ydxdy,其中D由直线x=-2,y=0,y=2及曲线x=
所围成.
选项
答案
察积分区域与被积函数的特点,选择适当方法求解. (Ⅰ)尽管D的边界不是圆弧,但由被积函数的特点知选用极坐标比较方便. D的边界线x=1及y=1的极坐标方程分别为 [*] 于是 [*] (Ⅱ)在积分区域D上被积函数分块表示,若用分块积分法较复杂.因D是圆域,可用极坐标变换转化为考虑定积分的被积函数是分段表示的情形.这时可利用周期函数的积分性质. 作极坐标变换x=rcosθ,y=rsinθ,则D:0≤θ≤2π,0≤r≤1.从而 [*] 其中sinθ
0
=[*].由周期函数的积分性质,令t=θ+θ
0
就有 [*] (Ⅲ) D的图形如图9.53所示.若把D看成正方形区域挖去半圆D
1
,则计算D
1
上的积分自然选用极坐标变换. 若只考虑区域D,则自然考虑先x后y的积分顺序化为累次积分.若注意D关于直线y=1对称,选择平移变换则最为方便. [*] 作平移变换u=x,v=y-1,注意曲线x=[*]即x
2
+(y-1)
2
=1,x≤0,则D变成D′.D′由u=-2,v=-1,v=1,u
2
+v
2
=1(u≤0)围成,则 [*] (在uv平面上D′关于u轴对称)
解析
转载请注明原文地址:https://kaotiyun.com/show/lT04777K
0
考研数学一
相关试题推荐
函数的反函数f-1(x)是[]
设函数u=u(x,y)满足及u(x,2x)=x,u’1(x,2x)=x2,u有二阶连续偏导数,则u’’11(x,2x)=()
n阶矩阵的秩为n一1,则a=().
设u(x,y)在平面有界闭区域D上具有二阶连续偏导数,且则u(x,y)的()
设则m,n可取().
设n阶方程A=(α1,α2,…,αn),B=(β1,β2,…,βn),AB=(γ1,γ2,…γn),记向量组(I):1,α2,…,αn,(Ⅱ):β1,β2,…,βn,(Ⅲ):γ1,γ2,…γn,如果向量组(Ⅲ)线性相关,则().
设n元实二次型f(x1,…,xn)=(x1+a1x2)2+(x2+a2x3)2+…+(xx-1+an-1xn)2+(xn+anx1)2,其中a1,…,an均为实数。试问:当a1,…,an满足何种条件时,二次型f是正定的。
(2004年)设有方程xn+nx一1=0,其中n为正整数,证明此方程存在唯一正实根xn,并证明当α>1时,级数收敛。
袋中有10个大小相等的球,其中6个红球4个白球,随机抽取2个,每次取1个,定义两个随机变量如下:就下列两种情况,求(X,Y)的联合分布律:(1)第一次抽取后放回;(2)第一次抽取后不放回.
如果f(x)在[a,b]上连续,在(a,b)内可导,且当x∈(a,b)时,f’(x)>0,又f(a)<0,则()
随机试题
纤维组织玻璃样变性可发生于
具有下列哪项情况时需做牙龈翻瓣术
下列标石种类的标识格式,可指示接头位置的有()。
建筑安装业务实行总包或分包的,由总包人按全部营业额为依据缴纳营业税,分包人没有纳税义务。()
下列各项中,可以作为计征契税的依据的有()。
把若干相邻学科内容加以筛选,充实后按照新的体系合而为一的课程形态称为()。
我国按生产要素分配的收入,其中有一种是()。
一、注意事项1.申论考试是对考生阅读理解能力、综合分析能力、提出和解决问题能力、文字表达能力的综合测试。2.仔细阅读所给材料,按照后面提出的“申论要求”依次作答。二、给定资料1.党的十七大报告指出,我们要坚持走生产发展、生活富裕
A.playaseparateroleB.workoutsidethehouseholdC.elementaryschoolteachersD.orinthelaborforceA.women
Architectureisartandtechniqueofdesigningandbuilding,asdistinguishedfromtheskillsassociatedwithconstruction.The
最新回复
(
0
)