首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求幂级数的收敛域与和函数. α1能α2,α3,α4否由线性表示;
求幂级数的收敛域与和函数. α1能α2,α3,α4否由线性表示;
admin
2017-02-13
108
问题
求幂级数
的收敛域与和函数.
α
1
能α
2
,α
3
,α
4
否由线性表示;
选项
答案
非齐次线性方程组解的判定: ①设A是m×n矩阵,则n元非齐次线性方程组Ax=b无解的充分必要条件是系数矩阵A的秩不等于增广矩阵[*]的秩,即r(A)≠r([*])。 ②设A是m×n矩阵,则n元非齐次线性方程组Ax=b有唯一解的充分必要条件是系数矩阵A的秩和增广矩阵[*]的秩都等于未知量的个数n,即r(A)=r([*])=n。 ③设A是m×n矩阵,则n元非齐次线性方程组Ax=b有无穷多解的充分必要条件是系数矩阵A的秩等于增广矩阵[*]的秩且小于未知量的个数n,即r(A)=r([*])
i为所给方程组的增广矩阵的列向量,将方程组改写成列向量形式: x
1
α
1
+x
2
α
2
+x
3
α
3
+x
4
α
4
=α
5
, 对应的齐次线性方程组为=0,x
1
α
1
+x
2
α
2
+x
3
α
3
+x
4
α
4
(*) 因为(1,-1,2,0)为方程组(*)的解,将其代入得到 1.α
1
+(-1)α
2
+2.α
3
+0.α
4
=α
1
一α
2
+2α
3
=0, 即α
1
=α
2
一2α
3
+0.α
4
,因而α
1
可由α
2
,α
3
,α
4
线性表示。
解析
转载请注明原文地址:https://kaotiyun.com/show/lUH4777K
0
考研数学三
相关试题推荐
设α,β为3维列向量,矩阵A=ααT+ββT,其中αT,βT分别是α,β的转置.证明:若α,β线性相关,则秩r(A)
差分方程yt+1-yt=t2t的通解为_______.
微分方程y"-4y=e2x的通解为________.
四名乒乓球运动员——1,2,3,4参加单打比赛,在第一轮中,1与2比赛,3与4比赛.然后第一轮中的两名胜者相互比赛决出冠亚军,两名败者也相互比赛决出第三名和第四名.于是比赛的一种最终可能结果可以记作1324(表示1胜2,3胜4,然后1胜3,2胜4).设
设函数f(x)在区间[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,f(1/2)=1.试证:存在η∈(1/2,1),使f(η)=η;
设a=(1,0,-1)T,矩阵A=aaT,n为正整数,则|aE-An|=___________.
设二次型f(x1,x2,x3)=XTAX=ax12+2x22-2x32+2bx1x3(b>0),其中二次型的矩阵A的特征值之和为1,特征值之积为-12.利用正交变换将二次型f化为标准形,并写出所用的正交变换和对应的正交矩阵.
利用三重积分计算下列立体Ω的体积:(1)Ω={(x,y,z)|,a>0,b>0,c>0};(2)Ω={(x,y,z)|x2+z2≤1,|x|+|y|≤1};(3)Ω={(x,y,z)|x2+y2+z2≤1,0≤y≤ax,a>0}.
求函数y=(x-1)eπ/2+arctanx的单调区间和极值,并求该函数图形的渐近线.
随机试题
A、Shewillonlylendmoneytoclosefriends.B、Shewilllendmoneytofriendsinemergency.C、Sheisreluctanttolendmoneyto
在全球化组织模式中,跨国组织模式被称为()
在薄钢板上钻孔和在厚钢板上钻孔所用的钻头是不同的。
随机变量(X,Y)在矩形区域D={(x,y)|a<x<b,c<y<d}内服从均匀分布.求:边缘密度函数fX(x),fY(y);
皆能活血行气的药组是()皆能活血通经,利水的药组是()
设立工程咨询企业法人的第三个程序为()。
有些学生虽然知道道德规范,也愿意遵守,但却受个人的欲望支配不能抗拒诱惑因素,结果做出违反道德规范的事,其主要原因是这些学生()。
2006年10月,刘某(女)与宋某(男)结婚时签订书面协议,约定婚后所得财产归各自所有,各自对外所欠的债务都由各自清偿。婚后,由于宋某经常赌博、酗酒而欠下债务7万余元。刘某为此经常规劝宋某改邪归正,但宋某非但不听,还经常打骂刘某。一日,因宋某酗酒晚归,刘某
阅读以下技术说明,根据要求回答问题1~问题5。[说明]某园区网的部分拓扑结构如图6-15所示。
Room504,XiamenHotelXiamenDecember26th,2008DearSirorMadam,IarrivedinXiamenfromNanjingthismorningbyExpres
最新回复
(
0
)