首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设η1,…,ηs是非齐次线性方程组Ax=b的s个解,k1,…,ks为实数,满足k1+k2+…+ks=1.证明x=k1η1+k2η2+…+ksηs也是该方程组的解.
设η1,…,ηs是非齐次线性方程组Ax=b的s个解,k1,…,ks为实数,满足k1+k2+…+ks=1.证明x=k1η1+k2η2+…+ksηs也是该方程组的解.
admin
2016-05-31
46
问题
设η
1
,…,η
s
是非齐次线性方程组Ax=b的s个解,k
1
,…,k
s
为实数,满足k
1
+k
2
+…+k
s
=1.证明x=k
1
η
1
+k
2
η
2
+…+k
s
η
s
也是该方程组的解.
选项
答案
由于η
1
,…,η
s
是非齐次线性方程组Ax=b的s个解,故有Aη
i
=b(i=1,…,s), 当x=k
1
η
1
+k
2
η
2
+…+k
s
η
s
, 有Ax=A(k
1
η
1
+k
2
η
2
+…+k
s
η
s
)=k
1
Aη
1
+k
2
Aη
2
+…+k
s
Aη
s
=b(k
1
+…+k
2
)=b,即Ax=b,故X也是方程的解.
解析
转载请注明原文地址:https://kaotiyun.com/show/lhT4777K
0
考研数学三
相关试题推荐
材料1 北京大学援鄂医疗队全体“90后”党员: 来信收悉。在新冠肺炎疫情防控斗争中,你们青年人同在一线英勇奋战的广大疫情防控人员一道,不畏艰险、冲锋在前、舍生忘死,彰显了青春的蓬勃力量,交出了合格答卷。广大青年用行动证明,新时代的中国青年是好样的,
这次新冠肺炎疫情,是新中国成立以来在我国发生的传播速度最快.感染范围最广、防控难度最大的一次重大突发公共卫生事件。对我们来说,这是一次危机,也是一次大考。实践证明,党中央对疫情形势的判断是准确的,各项工作部署是及时的,采取的举措是有力有效的。防控工作取得的
设α1,α2,…,αr,β都是n维向量,β可由α1,α2,…,αr线性表示,但β不能由α1,α2,…,αr-1线性表示,证明:αr可由α1,α2,…,αr-1,β线性表示.
设β,α1,α2线性相关,β,α2,α3线性无关,则().
化下列方程为齐次型方程,并求出通解:(1)(2y-x-5)dx-(2x-y+4)dy=0;(2)(2x-5y+3)dx-(2x+4y-6)dy=0;(3)(x+y)dx+(3x+3y-4)dy=0;(4)(y-x+1)dx-(y+x+5)dy=0.
设A为n阶实矩阵,AT是A的转置矩阵,则对于线性方程组(I):AX=0和(Ⅱ):ATAX=0,必有
设矩阵已知线性方程组AX=β有解但不唯一,试求(I)a的值;(Ⅱ)正交矩阵Q,使QTAQ为对角矩阵.
已知下列齐方程组(I)(Ⅱ)求解方程组(I),用其导出组的基础解系表示通解;
设四元线性齐次方程组(1)为x1+x2=0x2-x4=0又已知某线性齐次方程组(Ⅱ)的通解为:k1(0,1,1,0)+k2(-1,2,2,1).问线性方程组(I)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解,若没有,则说明理由.
随机试题
对于开放性血管损伤,且有活动性出血者应立即压迫止血、纠正休克、解除呼吸困难,再行手术探查。
男性,42岁,大量饮酒8小时后出现上腹疼痛,弯腰体位可减轻,左上腹压痛,最可能的诊断足
根据法律、法规及司法解释规定,下列关于案件是否属于行政诉讼受案范围的说法中,正确的是()。
关于劳动力边际收益递减规律的说法,正确的是()。
旅游合同的标的是指()。
①人文关怀,是一所大学最可爱的地方②正直的情操、完满的人格,勇于担当责任,敢于坚守真理……到底该成为什么样的人,是远比学习具体知识更为重要的大学课程③大学不仅要教书,更要育人,最高远的渴求除却知识,更应有智慧④于细微处淌露的真
联合行文标识机关时,标在前面的机关是()。
USB在音频系统应用的代表产品是微软公司推出的______。使用这个系统,可以把数字音频信号传送到音箱,不再需要声卡进行数模转换,音质也较以前有一定的提高。
下列属于计算机感染病毒迹象的是
Overnightsuccessusuallytakesatleast10years.Onemansaid,"Myovernightsuccesswasthelongestnightofmylife,I【C1】__
最新回复
(
0
)