首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设η1,…,ηs是非齐次线性方程组Ax=b的s个解,k1,…,ks为实数,满足k1+k2+…+ks=1.证明x=k1η1+k2η2+…+ksηs也是该方程组的解.
设η1,…,ηs是非齐次线性方程组Ax=b的s个解,k1,…,ks为实数,满足k1+k2+…+ks=1.证明x=k1η1+k2η2+…+ksηs也是该方程组的解.
admin
2016-05-31
42
问题
设η
1
,…,η
s
是非齐次线性方程组Ax=b的s个解,k
1
,…,k
s
为实数,满足k
1
+k
2
+…+k
s
=1.证明x=k
1
η
1
+k
2
η
2
+…+k
s
η
s
也是该方程组的解.
选项
答案
由于η
1
,…,η
s
是非齐次线性方程组Ax=b的s个解,故有Aη
i
=b(i=1,…,s), 当x=k
1
η
1
+k
2
η
2
+…+k
s
η
s
, 有Ax=A(k
1
η
1
+k
2
η
2
+…+k
s
η
s
)=k
1
Aη
1
+k
2
Aη
2
+…+k
s
Aη
s
=b(k
1
+…+k
2
)=b,即Ax=b,故X也是方程的解.
解析
转载请注明原文地址:https://kaotiyun.com/show/lhT4777K
0
考研数学三
相关试题推荐
已知向量组α1=(t,2,1),α2=(2,t,0),α3=(1,-1,1),试讨论:(1)t为何值时,向量组α1,α2,α3线性相关?(2)t为何值时,向量组α1,α2,α3线性无关?
设α1,α2,…,αr,β都是n维向量,β可由α1,α2,…,αr线性表示,但β不能由α1,α2,…,αr-1线性表示,证明:αr可由α1,α2,…,αr-1,β线性表示.
设β,α1,α2线性相关,β,α2,α3线性无关,则().
利用概率测度的性质证明:在投掷两枚硬币的试验中,第一枚是均匀的当且仅当P({(H,H),(H,T)})=1/2;第二枚硬币是均匀的当且仅当P({(H,H),(T,H)})=1/2,其中H表示硬币出现的是正面,T表示硬币出现的是反面.
求下列齐次型方程的通解:(1)xyˊ=y(1ny-lnx);;(3)xyˊ=xey/x+y;(4)(x+y)yˊ=x-y;(5)(x2+y2)dx-xydy=0;(6)(x+ycosy/x)dx-xcosy/xdy=0.
用常数变易法求下列线性微分方程的通解:(1)y〞+y=secx,已知y1(x)=cosx是方程y〞+y=0的一个解;(2)(2x-1)y〞-(2x+1)yˊ+2y=0,已知y1(x)=ex是该方程的一个解;(3)x2y〞-2xyˊ+2y=2x3,已知
设A为n阶实矩阵,AT为A的转置矩阵,则对于线性方程组(I)AX=0和(Ⅱ)ATAx=0必有().
已知下列齐方程组(I)(Ⅱ)求解方程组(I),用其导出组的基础解系表示通解;
随机试题
在InternetExplorer浏览器中,不能完成的任务是()
A、气虚便秘B、津亏便秘C、肠燥便秘D、热结便秘E、寒积便秘大黄配巴豆、干姜善治()。
下列关于出让建设用地使用权,说法错误的是()。
加工贸易联网监管的特点是:
价格通货膨胀会对财务比率分析产生( )。
注册资本应不少于()万元人民币。公司成立后,股东会作出增资和减资决议时,须经代表()以上表决权的股东通过。
邓小平以其非凡的智慧和坚强的意志带领中国人民走上了改革开放之路,创造了令世界瞩目的成绩。以下名言不是出自邓小平的是()。
操作系统是计算机软件系统中()。
A.beforethecancercellsspreadelsewhereB.themorechancesofdyingofX-rayradiationhewillhaveC.whatismostrespons
A、HebelievesthatJohnwasjoking.B、HebelievesthatJohnwillresignhisjob.C、HethinksthatJohnwillnotsellhishouse.
最新回复
(
0
)