首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)为连续的奇函数,且当x<0时,f(x)<0,f’(x)≥0.令 φ(x)=∫—11f(xt)dt+∫0xtf(t2一x2)dt, 讨论φ(x)在(一∞,+∞)内的凹凸性.
设f(x)为连续的奇函数,且当x<0时,f(x)<0,f’(x)≥0.令 φ(x)=∫—11f(xt)dt+∫0xtf(t2一x2)dt, 讨论φ(x)在(一∞,+∞)内的凹凸性.
admin
2017-07-26
80
问题
设f(x)为连续的奇函数,且当x<0时,f(x)<0,f’(x)≥0.令
φ(x)=∫
—1
1
f(xt)dt+∫
0
x
tf(t
2
一x
2
)dt,
讨论φ(x)在(一∞,+∞)内的凹凸性.
选项
答案
用二阶导数的符号判定. 由f(x)为连续的奇函数可知,∫
—a
a
f(x)dx=0. [*] φ"(x)=f(—x
2
)一2x
2
f’(一x
2
). 由f(x)为奇函数,且f(x)<0与f’(x)≥0可知,f(一x
2
)<0,f’(一x
2
)≥0.因此,有φ"(x)≤0,x∈(一∞,+∞),故φ(x)是(一∞,+∞)上的下凸函数.
解析
转载请注明原文地址:https://kaotiyun.com/show/lrH4777K
0
考研数学三
相关试题推荐
A、 B、 C、 D、 D
[*]
设A是m×n阶矩阵,下列命题正确的是().
设函数f(x)在区间[-1,1]上连续,则x=0是函数g(x)=的().
设A和B是任意两个概率不为0的不相容事件,则下列结论中肯定正确的是().
确定常数a,使向量组α1=(1,1,a)T,α2=(1,n,1)T,α3=(a,1,1)T可由向量组β1=(1,l,a)T,β2=(-2,a,4)T,β3=(-2,a,a)T线性表示,但向量组β1,β2,β3不能由向量组α1,α2,α3线性表示.
设随机变量x的概率密度函数为f(x)=,以Y表示对X进行三次独立重复观察中事件{X≤1/2)出现的次数,则P{Y=2}=________.
设α1=(2,-1,0,5),α2=(-4,-2,3,0),α3=(-1,0,1,k),α4=(-1,0,2,1),则k=________时,α1,α2,α3,α4线性相关.
设随机变量X,Y相互独立,且都服从(一1.1)上的均匀分布,令Z=max{X,Y},则P{0<Z<1}=_______
若函数φ(x)及ψ(x)是n阶可微的,且φ(k)(x0)=ψ(k)(x0),k=0,1,2,…,n一1.又x>x0时,φ(n)(x)>ψ(k)(x0).试证:当x>x0时,φ(x)>ψ(x).
随机试题
口服降糖药“格列吡嗪”俗称
针对李甲的起诉,人民法院应如何处理?()如果法院开庭审理后,经两次传票传唤李乙拒不到庭,则人民法院如何处理?()
由于房地产经纪合同履行违约而依法承担的法律后果属于:()。
目前,个人征信系统数据的直接使用者包括()。
古人有“闻过则喜”之说,而今天有些人则不然,总是_______,对比之下,实在不应该。填入画横线部分最恰当的一项是:
你在工作上认真严格,因此得罪了不少人,家人劝你不要太严格,否则没有群众基础,遇到这种情况,你怎么办?
汇率理论主要有()。
下列叙述中正确的是
以下选项中表示一个合法的常量是(说明:符号□表示空格)
ToliveintheUnitedStatestodayistogainanappreciationforDahrendorf’sassertionthatsocialchangeexistseverywhere.T
最新回复
(
0
)