首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n为正整数,f(x)=xn+x一1. 证明:对于给定的n,f(x)在(0,+∞)内存在唯一的零点xn;
设n为正整数,f(x)=xn+x一1. 证明:对于给定的n,f(x)在(0,+∞)内存在唯一的零点xn;
admin
2018-07-26
57
问题
设n为正整数,f(x)=x
n
+x一1.
证明:对于给定的n,f(x)在(0,+∞)内存在唯一的零点x
n
;
选项
答案
当x∈(0,+∞)时,f'(x)=nx
n-1
+1>0,所以在区间(0,+∞)上f(x)至多只有一个零点,又f(0)=一1<0,f(1)=1>0,所以f(x)在(0,+∞)上存在唯一零点,记为x
n
,且x
n
∈(0,1),此时f(x
n
)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/lyg4777K
0
考研数学一
相关试题推荐
设α1,α2,…,αn(n≥2)线性无关,证明:当且仅当n为奇数时,α1+α2,α2+α3,…,αn+α1线性无关.
设ε=为三维空间的两组基,则从基ε1,ε2,ε3到基e1,e2,e3的过渡矩阵为___________.
计算绕z轴一周所成的曲面介于z=2与z=8之间的几何体.
设随机变量X,Y相互独立且都服从标准正态分布,令U=X2+Y2.求:(1)f(u);(2)P{U>D(U)|U>E(U)}.
设f(x),g(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,证明:存在ξ∈(a,b),使得f’(ξ)+f(ξ)g’(ξ)=0.
设二维非零向量α不是二阶方阵A的特征向量.(1)证明α,Aα线性无关;(2)若A2α+Aα一6α=0,求A的特征值,讨论A可否对角化;
设随机变量X服从标准正态分布N(0,1),在X=x(一∞<x<+∞)的条件下,随机变量Y服从正态分布N(x,1).求在Y=y条件下关于X的条件概率密度.
A是三阶可逆矩阵,且各列元素之和均为2,则().
[x]表示不超过x的最大整数,则=_______。
设A=(α1,α2,α3,α4)为四阶方阵,且α1,α2,α3,α4为非零向量组,设AX=0的一个基础解系为(1,0,一4,0)T,则方程组A*X=0的基础解系为().
随机试题
负荷大、相对运动速度高的摩擦面常采用压力润滑。()
真理和谬误在一定条件下可以相互转化,这是()
患者女性,48岁。胃窦部溃疡13年,近年来出现持续性呕吐,呕吐物为宿食,明显消瘦。最有效的治疗措施是
在健康教育模式中,用以解释信念如何影响健康行为改变的最常见的模式是
刘先生,55岁,患2型糖尿病多年,体态肥胖,“三多一少”症不明显,血糖偏高。饮食控制、口服降糖药效果均不理想。刘先生向你咨询,宜建议他
关于喇叭形态的特征,下列说法不正确的是( )。
光驱的倍数越大()。
1960年,中共中央开始纠正大跃进和人民公社化运动中出现的一些错误。这主要是因为()。
根据以下资料,回答下列问题。2012年我国夏粮生产获得了较好收成。全国夏粮总产量达到12995万吨,比2011年增加356万吨,增长2.8%,超过1997年12768万吨的历史最高水平,比10年前增长31.6%。2012年,河北、山西、江苏、安徽
【F1】Breathingparticulate-laden(akasmoggy)airmaybehardeningyourarteriesfasterthannormal,accordingtoresearchpublishe
最新回复
(
0
)