首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设λ≠0是m阶矩阵Am×nBn×m的特征值,证明:λ也是n阶矩阵BA的特征值.
设λ≠0是m阶矩阵Am×nBn×m的特征值,证明:λ也是n阶矩阵BA的特征值.
admin
2020-06-05
15
问题
设λ≠0是m阶矩阵A
m×n
B
n×m
的特征值,证明:λ也是n阶矩阵BA的特征值.
选项
答案
方法一 因为λ是矩阵AB的任一非零特征值,设x是对应于λ≠0的特征向量,则有(AB)x=λx(x≠0),用矩阵B左乘上式两边,得(BA)Bx=B(ABx)=B(λx)=λ(Bx). 下面只需说明Bx≠0.若Bx=0,则由(AB)x=λx可得λx=0,因为x是对应于特征值λ的特征向量,故x≠0,于是λ=0,这与λ≠0矛盾,于是Bx≠0,进而可知λ也是n阶矩阵BA的特征值,Bx为对应于λ的特征向量. 方法二 若记P=[*],则P
﹣1
=[*],且 [*] 因此矩阵[*]与矩阵[*]相似,从而有相同的特征多项式,于是 [*] 即[*] 所以 (﹣λ)
n
|AB-λE
m
|=(﹣λ)
m
|BA-λE
n
| 若λ≠0是m阶矩阵A
m×n
B
n×m
的特征值,则有|BA-λE
n
|=(﹣λ)
n-m
|AB-λE
m
|=0,于是λ≠0也是n阶矩阵BA的特征值.
解析
转载请注明原文地址:https://kaotiyun.com/show/lyv4777K
0
考研数学一
相关试题推荐
设f(x)为二阶可导的奇函数,且x<0时有f"(x)>0,f’(x)<0,则当x>0时有().
设A是n阶非零矩阵,E是n阶单位矩阵,若A3=0,则().
设函数f(x)在x=a处可导,则函数|f(x)|在点x=a处不可导的充分条件是()
设α1,α2,…,αm与β1,β2,…,βs为两个n维向量组,且r(α1,α2,…,αm)=r(β1,β2,…,βs)=r,则().
设A,B为n阶实对称矩阵,则A与B合同的充分必要条件是().
[2013年]设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,记若α,β正交且均为单位向量,证明f在正交变换下的标准形为2y12+y22.
(91年)设函数f(x)在[0,1]上连续,(0,1)内可导,且=f(0).证明在(0,1)内存在一点c,使f’(c)=0.
已知二维随机变量(X,Y)的概率密度为试求(X,Y)的边缘概率密度fX(x),fY(y),并问X与Y是否独立。
设星形线的方程为,试求:它绕x轴旋转而成的旋转体的体积和表面积.
设A是一个n阶方阵,满足A2=A,R(A)=s且A有两个不同的特征值.计算行列式|A-2E|.
随机试题
A.热毒证B.暑湿证C.暑热证D.湿热证E.阴暑证香薷散的主治病证是
A.阴茎套B.宫内节育器C.复方短效口服避孕药D.绝育术E.安全期避孕绝经过渡期避孕方法不应选用
痛风可分为()两种类型
适用于二级和二级以下公路的粒料类基层有()。
下列有关质量事故调查的说法正确的是()。
导致水体富营养化的物质包括()。
期货交易具有( )的特点,吸引了众多投机者的参与。
基金分类的意义在于()。
可以计算其利润的组织单位才是真正意义上的利润中心。()
根据下面材料回答下列题。2010年大陆地区总人口性别比例(以男性人口为100,男性对女性的比例)为()。
最新回复
(
0
)