首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设λ≠0是m阶矩阵Am×nBn×m的特征值,证明:λ也是n阶矩阵BA的特征值.
设λ≠0是m阶矩阵Am×nBn×m的特征值,证明:λ也是n阶矩阵BA的特征值.
admin
2020-06-05
19
问题
设λ≠0是m阶矩阵A
m×n
B
n×m
的特征值,证明:λ也是n阶矩阵BA的特征值.
选项
答案
方法一 因为λ是矩阵AB的任一非零特征值,设x是对应于λ≠0的特征向量,则有(AB)x=λx(x≠0),用矩阵B左乘上式两边,得(BA)Bx=B(ABx)=B(λx)=λ(Bx). 下面只需说明Bx≠0.若Bx=0,则由(AB)x=λx可得λx=0,因为x是对应于特征值λ的特征向量,故x≠0,于是λ=0,这与λ≠0矛盾,于是Bx≠0,进而可知λ也是n阶矩阵BA的特征值,Bx为对应于λ的特征向量. 方法二 若记P=[*],则P
﹣1
=[*],且 [*] 因此矩阵[*]与矩阵[*]相似,从而有相同的特征多项式,于是 [*] 即[*] 所以 (﹣λ)
n
|AB-λE
m
|=(﹣λ)
m
|BA-λE
n
| 若λ≠0是m阶矩阵A
m×n
B
n×m
的特征值,则有|BA-λE
n
|=(﹣λ)
n-m
|AB-λE
m
|=0,于是λ≠0也是n阶矩阵BA的特征值.
解析
转载请注明原文地址:https://kaotiyun.com/show/lyv4777K
0
考研数学一
相关试题推荐
设f(x)为二阶可导的奇函数,且x<0时有f"(x)>0,f’(x)<0,则当x>0时有().
设随机变量X服从正态分布,其概率密度函数f(χ)在χ=1处有驻点,且f(1)=1,则X服从分布
设随机变量X与Y相互独立,其分布函数分别为FX(x)与FY(y),则Z=max{X,Y}的分布函数FZ(z)是
设α1,α2,α3,α4为四维非零列向量组,令A=(α1,α2,α3,α4),AX=0的通解为X=k(0,一1,3,0)T,则A*X=0的基础解系为().
矩阵A=舍同于
设n维行向量矩阵A=E一αTa,B=E+2αTa,则AB=()
(2003年)设函数f(x)连续且恒大于零,其中Ω(t)={(x,y,z)|x2+y2+z2≤t2},D(t)={(x,y)|x2+y2≤t2}。(I)讨论F(t)在区间(0,+∞)内的单调性;(Ⅱ)证明当t>0时,
(91年)设函数f(x)在[0,1]上连续,(0,1)内可导,且=f(0).证明在(0,1)内存在一点c,使f’(c)=0.
A为4阶方阵,R(A)=3,则A*X=0的基础解系所含解向量的个数为________.
设分块矩阵是正交矩阵,其中A、C分别为m,n阶方阵,证明:A、C均为正交矩阵,且B=0.
随机试题
简述股权取得日购买法和权益结合法的区别。
患者,男,60岁。糖尿病病史10年,检查:双下肢浮肿,尿蛋白(+++),空腹血糖8.0mmol/L,餐后2小时血糖11.13mmol/L,血压160/100mmHg。其诊断是
化生“天癸”的物质基础是
【案情】孙某与钱某合伙经营一家五金店,后因经营理念不合,孙某唆使赵龙、赵虎兄弟寻衅将钱某打伤,钱某花费医疗费2万元,营养费3000元,交通费2000元。钱某委托李律师向甲县法院起诉赵家兄弟,要求其赔偿经济损失2.5万元,精神损失5000元,并提供
小砌块砌体施工时对砂浆饱满度的要求严于砖砌体的要求。()
【背景资料】某新建办公楼工程,建筑面积48000m2,地下2层,地上6层,中庭高度为9m,钢筋混凝土框架结构。经公开招标投标,总承包单位以31922.13万元中标,其中暂定金额1000万元。双方依据《建设工程合同(示范文本)》(GF一
规范化服务的标准是()。
2015年1~4季度该市人均消费支出八大类中,同比增长的大类占人均消费总支出的比重比同比下降的大类()个百分点。
Youaregoingtoreadalistofheadingsandatextaboutwhatparentsaresupposedtodotoguidetheirchildrenintoadulthood
(46)Ifyouconsultcomparativeglobaleconomicandsocialstatistics,itisnotdifficulttopaintableakpictureofArabfailu
最新回复
(
0
)