首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n阶矩阵A满足(aW一A)(bE—A)=0且a≠b.证明:A可对角化.
设n阶矩阵A满足(aW一A)(bE—A)=0且a≠b.证明:A可对角化.
admin
2019-01-05
40
问题
设n阶矩阵A满足(aW一A)(bE—A)=0且a≠b.证明:A可对角化.
选项
答案
由(aE一A)(bE一A)=O,得|aE—A|.|bE—A|=0,则|aE—A|=0或者 同时r(aE—A)+r(bE一A)≥rE(aE—A)一(bE—A)]=rE(a一b)E]=n. 所以r(aE—A)+r(bE一A)=n. (1)若|aE—A|≠0,则r(aE—A)=n,所以r(bE—A)=0,故A=bE. (2)若|bE一A|≠0,则r(bE—A)=n,所以r(aE—A)=0,故A=aE. (3)若|aE—A|=0且|bE一A|=0,则a,b都是矩阵A的特征值. 方程组(aE一A)X=0的基础解系含有n一r(aE—A)个线性无关的解向量,即特征值a对应的线性无关的特征向量个数为n一r(aE—A)个; 方程组(bE—A)X=0的基础解系含有n一r(bE—A)个线性无关的解向量,即特征值b对应的线性无关的特征向量个数为n一r(bE—A)个. 因为n一r(aE—A)+n—r(bE—A)=n,所以矩阵A有n个线性无关的特征向量,所以A一定可以对角化.
解析
转载请注明原文地址:https://kaotiyun.com/show/m0W4777K
0
考研数学三
相关试题推荐
已知二次型f(x1,x2,x3)=x12+x22+x32+2ax1x2+2bx2x3+2x1x3经正交变换化为标准形f(x1,x2,x3)=y22+2y32,则a,b取值为________.
设X1,X2,…,Xn,…是相互独立的随机变量序列,Xn服从参数为n(n=1,2,…)的指数分布,则下列不服从切比雪夫大数定律的随机变量序列是().
设数列{an}满足条件:a0=3,a1=1,an—2一n,(n—1)an=0(n≥2)。S(x)是幂级数anxn的和函数。(Ⅰ)证明:S"(x)一S(x)=0;(Ⅱ)求S(x)的表达式。
计算二重积分其中D={(x,y)|0≤x≤1,0≤y≤1}。
设向量组a1,a2线性无关,向量组a1+b,a2+b线性相关,证明:向量b能由向量组a1,a2线性表示。
设A是n阶矩阵,若存在正整数k,使线性方程组Akx=0有解向量α,且Ak—1α≠0。证明:向量组α,Aα,…,Ak—1α是线性无关的。
设n元线性方程组Ax=b,其中(Ⅰ)当a为何值时,该方程组有唯一解,并求x1;(Ⅱ)当a为何值时,该方程组有无穷多解,并求通解。
设总体X的概率密度f(x)=其中a是常数,λ>0是未知参数,从总体X中抽取样本X1,X2,…,Xn。求:(Ⅰ)常数a;(Ⅱ)求λ的最大似然估计量。
设二维随机变量(X,Y)在区域G={(x,y)|1≤x+y≤2,0≤y≤1}上服从均匀分布。试求:(Ⅰ)(X,Y)的边缘概率密度fX(x)和fY(y);(Ⅱ)Z=X+Y的概率密度fZ(z)。
已知方程y’’+P(x)y’+q(x)y=0,求证:(I)若P(x)+xq(x)≡0,则y=x是方程的一个特解;(Ⅱ)若m2+mp(x)+q(x)≡0,则y=emx是方程的一个特解.
随机试题
华佗字元化,沛国谯人也。游学徐土,兼通数经。沛相陈跬举孝廉,太尉黄琬辟,皆不就。晓养性之术,时人以为年且百岁而貌有壮容。又精方药,其疗疾,合汤不过数种,心解分剂,不复称量,煮熟便饮,语其节度,舍去辄愈。若当灸,不过一两处,病亦应除。若当针,亦不过一两处,下
霍乱弧菌为
男性,55岁,慢性咳嗽、咳痰15余年,测VC为预计值的85%,FEV1/FVC为52%。此肺功能改变可能是
CO2通过呼吸膜的速率比O2快的主要原因是
下列关于城市排水规划内容的表述,哪些选项是正确的?()
甲、乙两个企业都投资5000万元,本年获利均为300万元,但甲企业的获利已全部转化为现金。而乙企业则全部是应收账款。财务人员在分析时认为这两个企业都获利300万元,经营效果相同,得出这种结论()。
某大型百货商场2003年9月发生如下业务:(1)销售商品:零售额800万元,其中包括:家电部以旧换新销售家电,实际收到零售收入90万元,已扣减旧货物收购价格5万元;首饰柜台以旧换新销售金首饰,实际收到零售收入4万元,旧金首饰扣减了零售收入2万元。
纪律的特征包括()。
“大有大成,小有小成”是()教学原则具体运用的结果。
人类语言具有哪5个特点?
最新回复
(
0
)