首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n阶矩阵A满足(aW一A)(bE—A)=0且a≠b.证明:A可对角化.
设n阶矩阵A满足(aW一A)(bE—A)=0且a≠b.证明:A可对角化.
admin
2019-01-05
44
问题
设n阶矩阵A满足(aW一A)(bE—A)=0且a≠b.证明:A可对角化.
选项
答案
由(aE一A)(bE一A)=O,得|aE—A|.|bE—A|=0,则|aE—A|=0或者 同时r(aE—A)+r(bE一A)≥rE(aE—A)一(bE—A)]=rE(a一b)E]=n. 所以r(aE—A)+r(bE一A)=n. (1)若|aE—A|≠0,则r(aE—A)=n,所以r(bE—A)=0,故A=bE. (2)若|bE一A|≠0,则r(bE—A)=n,所以r(aE—A)=0,故A=aE. (3)若|aE—A|=0且|bE一A|=0,则a,b都是矩阵A的特征值. 方程组(aE一A)X=0的基础解系含有n一r(aE—A)个线性无关的解向量,即特征值a对应的线性无关的特征向量个数为n一r(aE—A)个; 方程组(bE—A)X=0的基础解系含有n一r(bE—A)个线性无关的解向量,即特征值b对应的线性无关的特征向量个数为n一r(bE—A)个. 因为n一r(aE—A)+n—r(bE—A)=n,所以矩阵A有n个线性无关的特征向量,所以A一定可以对角化.
解析
转载请注明原文地址:https://kaotiyun.com/show/m0W4777K
0
考研数学三
相关试题推荐
设I=|xy|dxdy,其中D是以a为半径、以原点为圆心的圆,则I的值为().
已知某商品的需求量Q对价格的弹性为pln3,假设该商品的最大需求量为1200,则需求量Q关于价格p的函数关系是().
[*]按题设积分次序求不出积分值,可调换求之.为此先画出二重积分的区域.解所给积分的积分区域用D表示,如右图所示.该积分改用极坐标系计算,得到
设f(x)在[0,a]上有一阶连续导数,证明至少存在一点ξ∈[0,a],使得
设D=为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵。(Ⅰ)计算PTDP,其中P=(Ⅱ)利用(Ⅰ)的结果判断矩阵B—CTA—1C是否为正定矩阵,并证明结论。
设向量组a1,a2线性无关,向量组a1+b,a2+b线性相关,证明:向量b能由向量组a1,a2线性表示。
已知m个向量α1,…,αm线性相关,但其中任意m—1个向量都线性无关,证明:(Ⅰ)如果等式k1α1+…+kmαm=0成立,则系数k1,…,km或者全为零,或者全不为零;(Ⅱ)如果等式k1α1+…+kmαm=0和等式l1α1+…+lmαm=0都成立,则
广义积分
微分方程y’+ytanx=cosx的通解y=________。
设总体X的概率分布为其中p(0<p<1)是未知参数,又设x1,x2,…,xn是总体X的一组样本观测值.试求参数p的矩估计量和最大似然估计量.
随机试题
医师在为患者开处方时,为家庭困难的患者开具价格便宜、疗效突出的国产药,体现的药物治疗中的道德要求是
决策的基本过程包括()。
按招标投标法的规定,建设工程项目中可以不进行招标的是()。
张先生是一名部门经理,得到了一笔汽车贷款,每月的还款内容是:800元信用卡借贷余额,100元学生贷款,1100元房屋费用,汽车贷款每月的还款额是700元,他每月毛收入是7000元,那么其总额债务指数是( )。
ABC公司拟对正在使用的一台旧设备予以更新。该公司适用的企业所得税税率为25%,要求的最低收益率为12%。其他资料如下:资料一:新旧设备数据资料如下表所示。资料二:相关货币时间价值系数如下表所示。要求:(1)计算与购置新设备相关的下
论述如何树立正确的游戏教育观。
UntilItookDrOffutt’sclassinDeMathaHighschool,Iwasanunderachievingstudent,butIleftthatclass【C1】______neverto
甲深夜潜入乙家行窃,发现留长发穿花布睡衣的乙正在睡觉,意图奸淫,便扑在乙身上强脱其衣。乙惊醒后大声喝问,甲发现乙是男人,慌忙逃跑被抓获。甲的行为属于()
Mr.Smithmovedtoanothertown,andsoonheneededanewdoctor,sohewenttoseeone.Hesatdowninthewaitingroomandloo
【S1】【S6】
最新回复
(
0
)