首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(91年)试证明函数f(χ)=在区间(0,+∞)内单调增加.
(91年)试证明函数f(χ)=在区间(0,+∞)内单调增加.
admin
2019-05-11
64
问题
(91年)试证明函数f(χ)=
在区间(0,+∞)内单调增加.
选项
答案
因为f(χ)=[*]. f′(χ)=[*] 令g(χ)=[*],只要证明g(χ)>0,χ∈(0,+∞) 以下有两种方法证明g(χ)>0,一种是利用单调性,由于g′(χ)=-[*]<0,故函数g(χ)在(0,+∞)上单调减,又[*]=0,由此可见 g(χ)>0 χ∈(0,+∞) 另一种是利用拉格朗H中值定理,因为 [*] 而[*] 则[*] 从而对一切的χ∈(0,+∞)有 [*] 故函数f(χ)在(0,+∞)上单调增加.
解析
转载请注明原文地址:https://kaotiyun.com/show/mBJ4777K
0
考研数学三
相关试题推荐
设x3-3xy+y3=3确定隐函数y=y(x),求y=y(x)的极值.
设X,Y相互独立,且X~B(3,),Y~N(0,1),令U=max(X,Y),求P{1<U≤1.96}(其中Ф(1)=0.841,Ф(1.96)=0.975).
设二维随机变量(X,Y)在区域D:x2+y2≤9a2(a>0)上服从均匀分布,p=P(X2+9Y2≤9a2),则().
求二元函数z=f(x,y)=x2y(4-x-y)在由x轴、y轴及x+y=6所围成的闭区域D上的最小值和最大值.
设某元件的使用寿命X的概率密度为f(x;θ)=其中θ>0为未知参数.又设(x1,x2,…,xn)是样本(X1,X2,…,Xn)的观察值,求参数θ的最大似然估计值.
设随机变量X服从参数为2的指数分布,证明:Y=1-e-2X在区间(0,1)上服从均匀分布.
设曲线与x轴、y轴所围成的图形绕x轴旋转所得立体体积为V1(a),绕y轴旋转所得立体体积为V2(a),问以为何值时,V1(a)+V2(a)最大,并求最大值.
(2004年)设f(x)在(一∞,+∞)内有定义,且=a,g(x)=则()
设二元可微函数F(x,y)在直角坐标系中可写成F(x,y)=f(x)+g(y),其中f(x),g(y)均为可微函数,而在极坐标系中可写成F(x,y)=,求二元函数F(x,y)。
随机试题
在我国,现金日记账和银行存款日记账要选用()。
Dadhadablackcomb.HeboughtitwhenhemarriedMum.Everynight,hewould【C1】______mehiscombandsay,"Goodgirl,helpDad
质量互变的定律,揭示的是()
男性,20岁,轻度腹泻,伴粘液便4年。肠镜检查,结肠粘膜广泛密布的米粒到黄豆大的息肉。病变符合
3个月患儿体检时发现后囟尚未闭合,为明确病情,首选的检查是
在借贷记账法下,采用发生额试算平衡时,试算平衡的公式是()。
网上商店很多都不需要固定的经营地址,他们只要在网上申请一个空间就可以在上面卖东西了。这种无证经营很普遍,但却很难找出究竟是谁在经营。网上开店缴税之所以不好监管,是因为开店者不去有关部门登记。目前网上的许多商家,打着C2C(个人对个人)的旗号从事商业交易,没
已知矩阵则与A相似的矩阵是()
1.Peoplehavewonderedforalongtimehowtheirpersonalitiesandbehaviorsareformed.It’snoteasytoexplainwhyoneperso
Allnewproducts(产品)startasideas.Themanagerlooksatallthenewideas(41)putsdevelopmentmoneyinto(42)ofthem
最新回复
(
0
)