首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]二阶可导,且f(0)=f(1)=0,试证:存在ξ∈(0,1)使得
设f(x)在[0,1]二阶可导,且f(0)=f(1)=0,试证:存在ξ∈(0,1)使得
admin
2019-02-20
51
问题
设f(x)在[0,1]二阶可导,且f(0)=f(1)=0,试证:存在ξ∈(0,1)使得
选项
答案
令[*]由于 [*] 因此F(x)在[0,1]上连续,在(0,1)内可导. 由于f(0)=f(1)=0,由罗尔定理知,[*]η∈(0,1)使f’(η)=O.因此,F(η)=F(1)=0,对F(x)在[η,1]上利用罗尔定理得,[*]ξ∈(η,1)使得[*]即 [*]
解析
即证
在(0,1)存在零点
在(0,1)存在零点.
转载请注明原文地址:https://kaotiyun.com/show/mFP4777K
0
考研数学三
相关试题推荐
设f(x)=xTAx为一n元二次型,且有Rn中的向量x1和x2,使得f(x1)>0,f(x2)<0.证明:存在Rn中的向量x0≠0,使f(x0)=0.
设齐次线性方程组其中a≠0,b≠0,n≥2.试讨论a,b为何值时,方程组仅有零解、有无穷多组解?在有无穷多组解时,求出全部解,并用基础解系表示全部解.
已知r(A)=r1,且方程组AX=α有解,r(B)=r2,且BY=β无解,设A=[α1,α2,…,αn],B=[β1,β2,…,βn],且r[α1,α2,…,αn,β1,β2,…,βn,β]=r,则().
假设一设备开机后无故障工作的时间X服从指数分布,平均无故障工作的时间(E(X))为5小时.设备定时开机,出现故障时自动关机,而在无故障的情况下工作2小时便关机.试求该设备每次开机无故障工作的时间Y的分布函数F(y).
设A,B都是三阶方阵,满足AB=A—B,若λ1,λ2,λ3是A的三个不同特征值,证明:(1)λ1≠一1(i=1,2,3);(2)存在可逆阵C,使CTAC,CTBC同时为对角矩阵.
设有任意两个n维向量组α1,α2,...,αm和β1,β2,...,βm,若存在两组不全为零的数λ1,λ2,...,λm,k1,k2,...,km,使(λ1+k1)α+λ2+k2)α2+...+(λm+km)αm+=(λ1-k1)β1+(λ2-k2)
已知函数f(x)在区间(1-δ,1+δ)内具有二阶导数,f’(x)单调减少;且f(1)=f’(1)=1,则
设f(x)在[0,1]二阶可导,且|f(0)|≤a,|f(1)|≤a,|f"(x)|≤b,其中a,b为非负常数,求证:对任何c∈(0,1),有
设某产品的需求函数Q=Q(P)是单调减少的,收益函数R=PQ,当价格为P0,对应的需求量为Q0时,边际收益R’(Q0)=2,而R’(P0)=一150,需求对价格的弹性EP满足|EP|=.求P0和Q0.
某商品的需求价格弹性为|Ep|,某人的收入为M,全部用于购买该商品,求他的需求收入弹性.
随机试题
()抽油机井防冲距过小会造成活塞拔出泵筒。
It’sinterestinghowlittlemostofUSknowaboutourancestorsoraboutthehistoryofourfamily.Ifyou【56】tobenobility(贵族
男性,18岁。反复发作喘息3年,可自行缓解或口服氨茶碱后缓解。近半年无发作,要求确诊,下列哪项检查有助于哮喘的诊断
临床上最实用、最有效估计左心室后负荷的检查是
患者女性,28岁,低热3个月伴腹痛、腹胀。查体:神志清,营养略差,巩膜无黄染,无颈静脉怒张,两肺听诊无异常,心浊音界正常。腹部饱满,未见腹壁静脉曲张,全腹有轻度压痛;肝牌未触及,移动性浊音阳性。腹水蛋白定量30g/L。最可能的诊断是
采用烟气循环技术可降低NOx的生成量,适宜的烟气循环率为( )
属于对水工建筑物强度问题研究内容的有()。
通信系统必须具备的三个基本要素是______。
若用8位机器码表示十进制数-101,则原码表示的形式为(8);补码表示的形式为(9)。
Includingafewbitesofmeatinthedietsofpoorchildrenfromdevelopingcountriesimprovesboththeirhealthandtheirperfo
最新回复
(
0
)