首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是m×n矩阵,m<n,r(A)=m,以下选项中错误的是( )。
设A是m×n矩阵,m<n,r(A)=m,以下选项中错误的是( )。
admin
2022-03-14
49
问题
设A是m×n矩阵,m<n,r(A)=m,以下选项中错误的是( )。
选项
A、存在n阶可逆矩阵Q,使得AQ=(E
m
,O)
B、存在n阶可逆矩阵P,使得PA=(E
m
,O)
C、齐次线性方程组Ax=0有零解
D、非齐次线性方程组Ax=b有无穷多解
答案
B
解析
①因为A是m×n矩阵,m<n,r(A)=m,所以存在m阶可逆矩阵B和n阶可逆矩阵C,使得BAC=(E
m
,O),于是
AC=B
-1
(E
m
,O)=(B
-1
E
m
,O)=(E
m
B
-1
,O)
=(E
m
,O)
记D=
,则D为n阶可逆矩阵,且AC=(E
m
,O)D,由此可得,ACD
-1
=(E
m
,O).
②齐次线性方程组Ax=0总是有零解。
③由条件可得r(A)=r(A,b)=m<n,故Ax=b有无穷多解。
④下面的例子表明不一定存在m阶可逆矩阵P,使得PA=(E
m
,O).
取m=2,n=4,A=
,则A是2×4矩阵,2<4,且r(A)=2,但对于任意的2阶可逆矩阵P,有PA=P(O,E
2
)=(O,P)≠(E
2
,O)。
转载请注明原文地址:https://kaotiyun.com/show/mIR4777K
0
考研数学三
相关试题推荐
交换积分次序∫1edx∫0lnxf(x,y)dy为()
设随机变量X与Y相互独立,且都在[0,1]上服从均匀分布,则()
已知三阶矩阵A与三维非零列向量α,若向量组α,Aα,A2α线性无关,而A3α=3Aα-2A2α,那么矩阵A属于特征值λ=-3的特征向量是()
设A,B是n阶矩阵,则下列结论正确的是()
已知向量组(Ⅰ):α1,α2,α3;(Ⅱ)α1,α2,α3,α4;(Ⅲ):α1,α2,α3,α5.如果各向量组的秩分别为R(Ⅰ)=R(Ⅱ)=3,R(Ⅲ)=4.证明:向量组(Ⅳ):α1,α2,α3,α5一α4的秩为4.
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,记若α,β正交且均为单位向量,证明f在正交变换下的标准形为2y12+y22.
设区域D由直线x=0,y=0,围成,已知,则=__________。
[*]先作代换1/x=t,再用换底法求其极限.
将n个观测数据相加时,首先对小数部分按“四舍五入”舍去小数位后化为整数。试利用中心极限定理估计:试当n=1500时求舍位误差之和的绝对值大于15的概率;
设f(t)在[0,π]上连续,在(0,π)内可导,且∫0πf(x)cosxdx=∫0πf(x)sinxdx=0.证明:存在ξ∈(0,π),使得f’(ξ)=0.
随机试题
生产药品所需的原料、辅料,必须符合()
下列房源中,()是面向中低收入者提供的普通住房。
《建设工程工程量清单计价规范》中采用的综合单价为()。工程量清单编制的依据为()。
与1998年《证券法》相比,2005年《证券法》主要修订的内容有( )。
某公司于2015年3月2日以竞价方式承受土地使用权用于房地产开发。根据国有土地转让合同,需缴纳土地转让金2000万元,需上缴土地补偿费200万元,于4月3日办讫国有土地使用权证。当年因国家政策调整,重新修订土地使用权出让合同。补交土地出让金600万元。另向
招标采购被废标后,采购人应当将废标理由通知所有投标人,无需当重新组织招标的情形是()。
有关物业服务合同的法律特征,以下表述正确的有()。
随着世界经济与社会的发展,学校教育内容和规模不断增扩,为提高教学效率,培养更多的实用人才,班级授课制出现并被推广应用。中国正式采用班级授课制是在()。
关于IP组播的描述中,错误的是()。
PassageThreeWhatdothetwocoinagesinPara.4show?
最新回复
(
0
)